

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone: (01424) 718618

> cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

- Analytical Report Number: 22-40756
- Issue:
- **Date of Issue:** 27/05/2022
- Contact: James Phaure
- Customer Details: K4 Soils Laboratory Ltd Unit 8 Watford

1

- Quotation No: Q22-02658
- Order No: Not Supplied
- Customer Reference: 31765
- **Date Received:** 20/05/2022
- **Date Approved:** 27/05/2022
 - Phoenix Wharf, Port Talbot

HertfordshireWD18 9RU

Approved by:

Details:

Mike Varley, General Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

This report may only be reproduced in full

Sample Summary

Report No.: 22-40756, issue number 1

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
280276	BH1 5.00	Not Provided	20/05/2022	Silty loam	а
280277	BH1 9.30	Not Provided	20/05/2022	Silty loam	а
280278	BH2 3.90	Not Provided	20/05/2022	Silty loam	а
280279	BH2 10.40	Not Provided	20/05/2022	Silty loam	а
280280	BH3A 10.50	Not Provided	20/05/2022	Silty loam	а
280281	BH3A 12.00	Not Provided	20/05/2022	Silty clayey loam	а
280282	BH4 9.00	Not Provided	20/05/2022	Silty clayey loam	а
280283	BH4 11.50	Not Provided	20/05/2022	Silty loam	а

Results Summary

Report No.: 22-40756, issue number 1

		ELAB	Reference	280276	280277	280278	280279	280280	280281	280282	280283
	Cu	stomer	Reference								
		:	Sample ID								
	DISTURBED	DISTURBED	DISTURBED	DISTURBED	DISTURBED	DISTURBED	DISTURBED	DISTURBED			
	Sampl	e Location	BH1	BH1	BH2	BH2	BH3A	BH3A	BH4	BH4	
	5	Sample	Depth (m)	5.00	9.30	3.90	10.40	10.50	12.00	9.00	11.50
		Sam	pling Date	Not Provided							
Determinand	Codes	Units	LOD								
Soil sample preparation parameter	ers										
Moisture Content	N	%	0.1	21.0	31.5	43.1	31.2	60.1	23.9	19.3	40.0
Material removed	N	%	0.1	< 0.1	< 0.1	19.3	< 0.1	27.2	< 0.1	< 0.1	17.0
Description of Inert material removed	N		0	None	None	Stones/Wood	None	Stones/Wood	None	None	Stones
Miscellaneous											
Soil Organic Matter	U	%	0.1	2.6	5.8	10	7.2	16	6.5	1.0	15

Method Summary Report No.: 22-40756, issue number 1

Parameter	Codes	Analysis Undertaken On	Date Tested	Method Number	Technique		
Soil			-				
Soil organic matter	U	Air dried sample	25/05/2022	BS1377:P3	Titrimetry		

Report Information

Report No.: 22-40756, issue number 1

Key U hold UKAS accreditation hold MCERTS and UKAS accreditation Μ Ν do not currently hold UKAS accreditation MCERTS accreditation not applicable for sample matrix ٨ * UKAS accreditation not applicable for sample matrix S Subcontracted to approved laboratory UKAS Accredited for the test SM Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test NS Subcontracted to approved laboratory. UKAS accreditation is not applicable. I/S Insufficient Sample U/S Unsuitable sample n/t Not tested means "less than" < means "greater than" > LOD refers to limit of detection, except in the case of pH soils and pH waters where it LOD means limit of discrimination. Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed. ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received. PCB congener results may include any coeluting PCBs Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.

Deviation Codes

- No date of sampling supplied а
- b No time of sampling supplied (Waters Only)
- С Sample not received in appropriate containers
- d Sample not received in cooled condition
- е The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- Sample age exceeds stability time (sampling to analysis) g

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

TPH Classification - HWOL Acronym System

- HS Headspace analysis
- ΕH Extractable Hydrocarbons - i.e. everything extracted by the solvent
- CU Clean-up - e.g. by florisil, silica gel
- 1D GC - Single coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- Aromatics only AR
- 2D GC-GC - Double coil gas chromatography
- #1 EH_Total but with humics mathematically subtracted
- #2 EH_Total but with fatty acids mathematically subtracted
- Operator underscore to separate acronyms (exception for +)
- + Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
- MS Mass Spectrometry

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone: (01424) 718618

> cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytic	al Report	Number:	22-40182
----------	-----------	---------	----------

- Issue:
- **Date of Issue:** 05/05/2022
- Contact: Mitchell Tucker

1

TEC

- Customer Details:
- The Old Chapel 35A Southover Wells SomersetBA5 1UH
- Quotation No: Q22-02908
- Order No: 2111006.003
- Customer Reference: 2111006.003
- **Date Received:** 27/04/2022
- **Date Approved:** 05/05/2022
- **Details:**

Approved by:

Phoenix Wharf, Port Talbot

S

Catherine Biddiss, Organics Laboratory Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

This report may only be reproduced in full

Sample Summary

Report No.: 22-40182, issue number 1

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
276667	BH1 4.20 - 4.65	04/04/2022	27/04/2022	Sandy silty loam	
276668	BH1 13.50	06/04/2022	27/04/2022	Silty clayey loam	
276669	BH1 16.50	06/04/2022	27/04/2022	Loamy sand	
276670	BH2 3.00 - 3.10	04/04/2022	27/04/2022	Silty clayey loam	fg
276671	BH2 5.00 - 5.40	04/04/2022	27/04/2022	Clayey loam	
276672	BH2 9.50 - 9.95	05/04/2022	27/04/2022	Loamy sand	fg
276673	BH2 12.50 - 12.95	05/04/2022	27/04/2022	Sandy silty loam	
276674	BH3A 3.20 - 4.20	12/04/2022	27/04/2022	Sandy silty loam	
276675	BH3A 6.70 - 7.15	12/04/2022	27/04/2022	Silty clayey loam	fg
276676	BH3A 9.20 - 9.70	12/04/2022	27/04/2022	Silty clayey loam	
276677	BH3A 12.00 - 12.95	13/04/2022	27/04/2022	Silty clayey loam	fg
276678	BH3A 13.50 - 14.20	13/04/2022	27/04/2022	Sandy clayey loam	
276679	BH3A 15.70 - 16.70	13/04/2022	27/04/2022	Loamy sand	
276680	BH3A 17.30 - 18.30	13/04/2022	27/04/2022	Loamy sand	fg
276681	BH4 11.00 - 11.45	12/04/2022	27/04/2022	Silty clayey loam	
276682	BH4 14.00 - 14.45	13/04/2022	27/04/2022	Silty clayey loam	fg

Results Summary

Report No.: 22-40182, issue number 1

		ELAB	Reference	276667	276668	276669	276670	276671	276672	276673	276674	276675	276676
	C	Customer	Reference										
		ę	Sample ID										
			nple Type		DISTURBED	DISTURBED	DISTURBED	DISTURBED	DISTURBED	DISTURBED	DISTURBED	DISTURBED	DISTURBED
			e Location		BH1	BH1	BH2	BH2	BH2	BH2	BH3A	BH3A	BH3A
		•									-	-	
		Sample	Depth (m)	4.20 - 4.65	13.50	16.50	3.00 - 3.10	5.00 - 5.40	9.50 - 9.95	12.50 - 12.95	3.20 - 4.20	6.70 - 7.15	9.20 - 9.70
		Sam	pling Date	04/04/2022	06/04/2022	06/04/2022	04/04/2022	04/04/2022	05/04/2022	05/04/2022	12/04/2022	12/04/2022	12/04/2022
Determinand	Codes	Units	LOD										
Soil sample preparation parameter	ers												
Moisture Content	Ν	%	0.1	20.9	10.5	10.9	23.7	20.7	20.1	26.6	11.3	16.6	19.3
Material removed	Ν	%	0.1	10.9	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Description of Inert material removed	Ν		0	Stones/Clinker	None	None	None	None	None	None	None	None	None
Anions													
Water Soluble Chloride	М	mg/l	20	< 20	119	26	< 20	22	510	1200	314	1020	1110
Water Soluble Nitrate	U	mg/l	20	24	38	< 20	44	40	51	58	58	61	59
Water Soluble Sulphate	М	mg/l	20	138	42	22	201	89	374	874	104	96	323
Inorganics													
Ammonia as NH4	Ν	mg/kg	0.1	n/t	n/t	n/t	fg 10.1	n/t	fg 1.6	n/t	n/t	fg 30.8	n/t
Ammonia as NH4	0.1	n/t	n/t	n/t	fg 1.0	n/t	fg 0.2	n/t	n/t	fg 3.1	n/t		
Total Sulphur	0.01	n/t	n/t	n/t	0.72	n/t	0.34	n/t	n/t	0.11	n/t		
Miscellaneous													
pН	М	pH units	0.1	7.5	8.0	7.6	7.5	8.0	7.9	7.4	8.0	8.2	7.9

Results Summary

Report No.: 22-40182, issue number 1

					-				
		ELAB F	Reference	276677	276678	276679	276680	276681	276682
	C	Customer F	Reference						
		5	Sample ID						
			, nple Type		DISTURBED	DISTURBED	DISTURBED	DISTURBED	DISTURBED
			e Location		ВНЗА	BH3A	BH3A	BH4	BH4
		•						11.00 - 11.45	
			pling Date		13/04/2022	13/04/2022	13/04/2022	12/04/2022	13/04/2022
Determinand	Codes			13/04/2022	13/04/2022	13/04/2022	13/04/2022	12/04/2022	13/04/2022
	-	Units	LOD						
Soil sample preparation paramet	ers								
Moisture Content	N	%	0.1	21.7	15.5	9.4	11.6	22.1	21.4
Material removed	N	%	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Description of Inert material removed	N		0	None	None	None	None	None	None
Anions									
Water Soluble Chloride	M	mg/l	20	1290	985	119	72	1960	1210
Water Soluble Nitrate	U	mg/l	20	64	61	35	29	73	56
Water Soluble Sulphate	M	mg/l	20	144	36	38	34	333	302
Inorganics									
Ammonia as NH4	N	mg/kg	0.1	fg 16.4	n/t	n/t	fg 1.5	n/t	fg 24.5
Ammonia as NH4	N	mg/l	0.1	fg 1.6	n/t	n/t	fg 0.1	n/t	fg 2.5
Total Sulphur	N	%	0.01	0.61	n/t	n/t	0.07	n/t	0.56
Miscellaneous									
рН	M	pH units	0.1	7.7	7.9	7.5	7.7	8.1	7.9

Method Summary Report No.: 22-40182, issue number 1

Parameter		Analysis Undertaken On	Date Tested	Method Number	Technique
Soil					
рН	М	Air dried sample	05/05/2022	113	Electromeric
Ammonia in soil	N	As submitted sample	05/05/2022	138	Colorimetry
Water soluble anions	М	Air dried sample	29/04/2022	172	Ion Chromatography
Total organic carbon/Total sulphur	N	Air dried sample	29/04/2022	216	IR

Tests marked N are not UKAS accredited

Report Information

Report No.: 22-40182, issue number 1

Key

hold UKAS accreditation
hold MCERTS and UKAS accreditation
do not currently hold UKAS accreditation
MCERTS accreditation not applicable for sample matrix
UKAS accreditation not applicable for sample matrix
Subcontracted to approved laboratory UKAS Accredited for the test
Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
Subcontracted to approved laboratory. UKAS accreditation is not applicable.
Insufficient Sample
Unsuitable sample
Not tested
means "less than"
means "greater than"
LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination.
Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.
ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received.
PCB congener results may include any coeluting PCBs
Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.
Codes
No date of sampling supplied
No time of sampling supplied (Waters Only)
Sample not received in appropriate containers
Sample not received in cooled condition
The container has been incorrectly filled
Sample age exceeds stability time (sampling to receipt)
Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

TPH Classification - HWOL Acronym System

- HS Headspace analysis
- EH Extractable Hydrocarbons i.e. everything extracted by the solvent
- CU Clean-up e.g. by florisil, silica gel
- 1D GC Single coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatics only
- 2D GC-GC Double coil gas chromatography
- #1 EH_Total but with humics mathematically subtracted
- #2 EH_Total but with fatty acids mathematically subtracted
- _ Operator underscore to separate acronyms (exception for +)
- + Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
- MS Mass Spectrometry

Appendix E

Generic Quantitative Risk Assessment: Human Health

Project Number: 2111006.003		Lab Sample Number:	2250035	2250036	2250037	2250038	2250039	2250040	2250041	2250042	2250043	2250044	2250045	2250046	2250047	2250048	2250049	2251447	2255199	2255200	2255201	2255202	2255203
Name: Phoenix Whard, Port Talbot		Sample Reference:	TP01	TP02	TP02	TP03	TP05	TP06	TP07	TP08	TP10	TP11	TP12	TP15	TP16	TP17	TP19	WS07	WS01	WS01	WS02	WS05	WS06a
Site End Use:		Sample Number:																					1
		Depth (m):	0.15	0.2	2.4	1.2	0.1	1	0.2	0.1	0.1	0.1	0.6	0.8	0.2	0.2	0.2	0.20-0.70	0.40-0.60	3.20-3.50	0.20-0.60	0.20-0.60	0.20-0.50
Commercial		Date Sampled:	12/04/2022	12/04/2022	12/04/2022	12/04/2022	44663	44663	44663	44663	44663	44663	44663	44663	44663	44663	44663	21/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022	14/04/2022
		Time Taken:																					1
Determinand	GAC	Units					5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Arsenic	640 th	mg/kg	12	300	32	13	32	11	9.3	27	16	18	13	64	68	19	11	15	32	52	31	13	12
Boron	240000(3)	mg/kg	0.7	0.3	0.9	0.4	0.4	0.3	< 0.2	11	0.9	0.7	3.9	2.3	1	0.7	0.4	0.5	0.4	1.2	0.8	< 0.2	0.5
Cadmium	41000	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2	2.1	< 0.2	< 0.2	4.8	1.6	1.3	110	5.2	< 0.2	< 0.2	5	< 0.2	3	< 0.2	1.5	< 0.2	< 0.2
Chromium (total)	8600(3)	mg/kg	8.7	70	59	87	72	11	5.3	140	47	12	140	33	28	12	240	8.6	99	240	31	6.6	6.8
Chromium (VI)	49(1)	mg/kg	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	<1.2	< 1.2	< 1.2	< 1.2	< 1.2	<12	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
	68000 ⁽³⁾	mg/kg	29	67	< 1.2 81	< 1.2	< 1.2	18	7.3	290	67	350	2200	430	400	120	\$ 1.2	140	56	54	180	33	< 1.2
Copper	2300(1)		31	260	150	9.7	130	30	4.7	1300	60	40	570	170	520	96	260	140	270	560	120	10	19
Lead Mercury	2300 ⁽²⁾	mg/kg	< 0.3		0.7	< 0.3	< 0.3			< 0.3	< 0.3				520	96			< 0.3	< 0.3	< 0.3		
		mg/kg		< 0.3				0.5	< 0.3			0.5	2	< 0.3			< 0.3	< 0.3				< 0.3	< 0.3
Nickel	1800(2)	mg/kg	8.1	28	36	8.2	46	10	4.6	130	21	15	370	38	72	14	35	32	45	28	34	6.2	28
Selenium	13000 ⁽²⁾	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Zinc	730000 ⁽³⁾	mg/kg	77	460	290	30	230	41	18	770	120	94	1900	360	400	160	720	47	550	890	260	38	31
Beryllium	12(3)	mg/kg	0.4	1.2	2.2	0.26	1.2	0.34	0.17	1.2	0.76	0.33	0.23	1.1	1.1	0.41	0.84	0.91	1.1	1.5	2.1	0.19	0.81
Vanadium	9000(3)	mg/kg	17	120	100	15	93	17	11	180	52	20	19	55	55	22	430	25	320	240	51	15	23
Barium	22000 ⁽⁴⁾	mg/kg	44	91	250	8.9	340	18	5.1	380	100	46	640	220	390	92	300	250	220	200	270	13	170
Cyanide (Total)	20(5)	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	6.4	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Phenol (Monohydric)	440(3)	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Sulphide	-	mg/kg	430	110	190	6.2	4.8	4.7	1.1	33	38	1.1	17	11	10	9.2	27	12	21	150	830	2.9	2.2
Total Organic Carbon (TOC)	-	%	1.8	3.5	2.7	0.6	5.6	0.3	< 0.1	2.2	1.8	1.8	1.3	6.4	5.8	5	1.6	6.4	1.3	1.3	2.6	0.4	7.3
Naphthalene	190 ⁽³⁾	mg/kg	< 0.05	1.1	0.51	0.96	0.72	< 0.05	< 0.05	0.57	< 0.05	1.3	< 0.05	1.9	< 0.05	< 0.05	< 0.05	9.3	< 0.05	0.58	1.3	< 0.05	28
Acenaphthylene	83000 ⁽³⁾	mg/kg	< 0.05	1.4	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.87	< 0.05	0.4	0.6	< 0.05	< 0.05	0.28	< 0.05	0.61
Acenaphthene	84000(3)	ma/ka	< 0.05	0.51	< 0.05	9.9	2.5	0.28	< 0.05	0.86	0.3	2.7	< 0.05	3.8	11	66	< 0.05	6.5	< 0.05	< 0.05	0.22	< 0.05	12
Fluorene	63000(3)	mg/kg	< 0.05	3.4	< 0.05	93	3	0.23	< 0.05	1	0.33	2.7	< 0.05	3.2	12	99	0.34	5.4	< 0.05	< 0.05	0.95	< 0.05	10
Phenanthrone	22000[3)	mg/kg	11	24	1.5	45	29	4.1	< 0.05	11	3	28	2.2	44	140	950	2.3	93	1.3	0.96	6.9	< 0.05	99
Anthracene	520000 ^(s)	mg/kg	0.25	15	0.31	24	8	0.91	< 0.05	2.8	0.84	8.1	0.57	14	35	220	0.43	24	0.21	< 0.05	1.8	< 0.05	38
Fluoranthene	23000(3)	mg/kg	2.3	27	1.5	45	31	4.5	< 0.05	16	4.7	27	3	53	180	1100	3.9	110	1.7	1.1	8.8	< 0.05	100
Pyrene	54000(3)	mg/kg	2.3	18	1.2	43	27	3.8	< 0.05	13	4.3	24	2.6	54	160	900	2.8	120	1.3	0.88	6.3	< 0.05	120
Benzo(a)anthracene	1700	mg/kg	1.8	24	1.1	51	14	2.5	< 0.05	7.8	2.9	16	1.8	48	100	520	3.1	78	1.2	0.73	5.5	< 0.05	130
Chrysene	3500	mg/kg	1.6	16	0.88	33	14	1.6	< 0.05	8.3	2.7	16	1.4	36	75	530	2.6	75	0.93	0.64	3.9	< 0.05	92
Benzo(b)fluoranthene	44(3)		2.5	18	0.86	33	12	1.0	< 0.05	7	2.2	18	1.4	30	75	320	2.0	75	0.95	0.68	3.9	< 0.05	72
Benzo(k)fluoranthene	1200(3)	mg/kg	1.1	6.6	0.56	17	3.2	0.79	< 0.05	3.2	1.1	4.5	0.65	20	50	280	0.85	32	0.64	0.88	2.4	< 0.05	43
	35(3)	mg/kg			0.56	17	3.2 9.2	0.79		3.2		4.5	1.5	20	50	280	0.85	32				< 0.05	43
Benzo(a)pyrene		mg/kg	2.5	13		40			< 0.05		1.9			44	/1	340		0/	0.63	0.45	3		110
Indeno(1,2,3-cd)pyrene	500(3)	mg/kg	1.1	5.5	0.36	15	5.3	0.7	< 0.05	3.5	1.2	6.9	0.79	20	36	130	2.5	40	0.38	0.25	1.6	< 0.05	55
Dibenz(a,h)anthracene	3.5%	mg/kg	0.34	2.8	< 0.05	5.3	1.5	0.21	< 0.05	1.1	0.42	2.1	< 0.05	5.8	11	42	0.69	9.3	< 0.05	< 0.05	0.62	< 0.05	18
Benzo(ghi)perylene	3900 ⁽³⁾	mg/kg	1.4	5.3	0.47	15	5.3	0.81	< 0.05	3.6	1.4	7.3	0.9	23	36	130	5.3	42	0.29	0.31	1.7	< 0.05	58
Speciated Total EPA-16 PAHs	-	mg/kg	18.4	181	9.99	398	165	24	< 0.80	84.5	26.9	180	17.2	417	992	5630	29.8	786	9.46	6.82	49.1	< 0.80	1040
Benzene	27(3)	µg/kg	-	< 1.0	< 1.0	-	< 1.0	< 1.0		< 1.0	< 1.0		< 1.0	-	< 1.0	< 1.0		< 1.0	< 1.0	-	< 1.0	< 1.0	· · · · · ·
Toluene	56000 ⁽³⁾	µg/kg	-	< 1.0	< 1.0	•	< 1.0	< 1.0	-	< 1.0	< 1.0	-	< 1.0	-	< 1.0	< 1.0	-	< 1.0	< 1.0	-	< 1.0	< 1.0	· · · · · · · · · · · · · · · · · · ·
Ethylbenzene	5700(3)	µg/kg		< 1.0	< 1.0	-	< 1.0	< 1.0	-	< 1.0	< 1.0	-	< 1.0	-	< 1.0	< 1.0	-	< 1.0	< 1.0		< 1.0	< 1.0	-
p & m-xylene	5900 ⁽³⁾	µg/kg	-	< 1.0	< 1.0	-	< 1.0	< 1.0	-	< 1.0	< 1.0	-	< 1.0	-	< 1.0	< 1.0	-	< 1.0	< 1.0	-	< 1.0	< 1.0	· · · ·
o-xylene	6600(3)	µg/kg	-	< 1.0	< 1.0	-	< 1.0	< 1.0	-	< 1.0	< 1.0	-	< 1.0	-	< 1.0	< 1.0	-	< 1.0	< 1.0	-	< 1.0	< 1.0	· · ·
MTBE (Methyl Tertiary Butyl Ether)	7900(4)	µg/kg		< 1.0	< 1.0	-	< 1.0	< 1.0		< 1.0	< 1.0		< 1.0		< 1.0	< 1.0		< 1.0	< 1.0		< 1.0	< 1.0	
TPH Aliphatic C5 - C6	3200(3)	mg/kg		< 0.001	< 0.001		< 0.001	< 0.001		< 0.001	< 0.001		< 0.001		< 0.001	< 0.001		< 0.001	< 0.001		< 0.001	< 0.001	· · ·
TPH Aliphatic C6 - C8	7800(3)	mg/kg	-	< 0.001	< 0.001	-	< 0.001	< 0.001		< 0.001	< 0.001	-	< 0.001	-	< 0.001	< 0.001	-	< 0.001	< 0.001	-	< 0.001	< 0.001	
TPH Aliphatic C8 - C10	2000(3)	mg/kg		< 0.001	< 0.001	-	< 0.001	< 0.001	-	< 0.001	< 0.001	-	< 0.001	-	< 0.001	< 0.001	-	< 0.001	< 0.001		< 0.001	< 0.001	
TPH Aliphatic C10 - C12	9700(3)	mg/kg		< 1.0	3.4	-	< 1.0	< 1.0	-	< 1.0	3.6	-	1.1	-	< 1.0	< 1.0	-	< 1.0	< 1.0		< 1.0	< 1.0	
TPH Aliphatic C12 - C16	59000 ⁽³⁾	mg/kg		9.4	12	-	< 2.0	< 2.0	-	14	86	-	9.1	-	5.1	< 2.0	-	5.4	< 2.0		< 2.0	< 2.0	-
TPH Aliphatic C16 - C21	1600000 ⁽³⁾	mg/kg		17	18		< 8.0	< 8.0		49	120		32	-	< 8.0	< 8.0	-	23	< 8.0		< 8.0	< 8.0	-
TPH Aliphatic C21 - C35	1600000 ⁽³⁾	ma/ka		38	41		< 8.0	< 8.0		230	440		110	-	73	< 8.0	-	98	< 8.0		< 8.0	< 8.0	
TPH Aromatic C5 - C7	26000(3)	mg/kg	-	< 0.001	< 0.001		< 0.001	< 0.001	-	< 0.001	< 0.001	-	< 0.001	-	< 0.001	< 0.001	-	< 0.001	< 0.001	-	< 0.001	< 0.001	-
TPH Aromatic C7 - C8	56000(3)	mg/kg		< 0.001	< 0.001		< 0.001	< 0.001		< 0.001	< 0.001		< 0.001		< 0.001	< 0.001		< 0.001	< 0.001		< 0.001	< 0.001	
TPH Aromatic C8 - C10	3500(3)	mg/kg		< 0.001	< 0.001		< 0.001	< 0.001		< 0.001	< 0.001		< 0.001		< 0.001	< 0.001		< 0.001	< 0.001		< 0.001	< 0.001	
TPH Aromatic C10 - C12	16000(3)	mg/kg		3	19		< 1.0	< 1.0		15	1.2		< 1.0		14	28		5.1	< 1.0	-	2	< 1.0	· ·
TPH Aromatic C10 - C12	36000(3)			13	5.2		< 1.0	< 2.0		7.7	1.2		< 1.0		41	320		23	5.3		6.6	< 2.0	
		mg/kg	-		< 10	-	41	< 2.0			19	-	~	-	41 590	320	-	23			6.6	< 2.0	<u> </u>
TPH Aromatic C16 - C21	28000(3)	mg/kg	-	91		•				38			18						12	-			· · ·
TPH Aromatic C21 - C35	28000(3)	mg/kg		150	18	-	60	31	-	120	360	-	46	-	1100	6800	-	770	20		39	17	<u> </u>

Concentration does not exceed GAC
Concentration exceeds GAC
No set GAC

*All GACs based on a sandy soil and Soil Organic Matter (SOM) of 1% where applicable.

Appendix F

Generic Quantitative Risk Assessment: Controlled Waters

Leachability Analysis

Contaminant	Max.	Min.	SSV (µg/l)	No. of Exceedances	DWS ⁽⁴⁾ (µg/l)	No. of Exceedances
Arsenic	8.5	<1.0 ⁽⁶⁾	25 ⁽¹⁾	0	-	-
Barium	160	12	700(3)	0	-	-
Beryllium	0.4	0.2	12(3)	0	-	-
Boron	180	24	7000 ⁽¹⁾	0	-	-
Cadmium	1.6	< 0.08(6)	0.2(1)	2	5	0
Chromium	3.5	0.8	4.7(1)	0	-	-
Copper	25	2.7	3.76 ⁽¹⁾	5	2000	0
Lead	9.4	2.9	1.3 ¹⁾	6	10	0
Mercury	< 0.5(6)	< 0.5(6)	0.07(2)	6	1.0	0
Nickel	5.0	2.7	8.6(1)	0	-	-
Selenium	5.0	< 4.0 ⁽⁶⁾	10(4)	0	-	-
Vanadium	11	<1.7%)	100(1)	0	-	-
Zinc	16	8	6.8(1)	6	10.9(5)	3
Cyanide (Total)	<10(6)	<10(6)	1 ^(1,7)	6	50	0
Total Phenol (Monohydric)	<10(6)	<10(6)	7.7 ^(1,7)	6	-	-
Sulphate	90300	2500	400000 ⁽¹⁾	0		-
Sulphide	< 5.0(6)	< 5.0 ⁽⁶⁾	-	-	-	-
рН	8.4	7.7	-	-	-	-
Naphthalene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	4.0(4)	0	-	-
Acenaphthylene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	-	-	-	-
Acenaphthene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	-	-	-	-
Fluorene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	-	-	-	-
Phenanthrene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	-	-	-	-
Anthracene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	0.1(1)	0	-	-
Fluoranthene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	-	-	-	-
Pyrene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	-	-	-	-
Benzo(a)anthracene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	-	-	-	-
Chrysene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	-	-	-	-
Benzo(b)fluoranthene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	-	-	-	-
Benzo(k)fluoranthene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	-	-	-	-
Benzo(a)pyrene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	0.00017 ^(1,7)	6	0.01 ⁽⁴⁾	0
Indeno(1,2,3-cd)pyrene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	-	-	-	-
Benzo(g,h,i)perylene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾			-	-
Dibenz(a,h)anthracene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	-	-	-	-
Total PAH	< 0.2 ⁽⁶⁾	< 0.2 ⁽⁶⁾	-	-	-	-

Notes:

1

2 3

EQS, Annual Average (AA) – Coastal Waters EQS, Maximum Allowable Concentrations (MAC) – Coastal Waters WHO Guidelines for Drinking Water Quality (2008) Water Supply (Water Quality) Regulations 2018 – Drinking Water Standards (DWS) EQS, Annual Average (AA) – Freshwater Laboratory Limit of Detection Laboratory Limit of Detection greater than SSV 4 5

6 7

Perched Water (Made Ground) and Upper Groundwater (Superficial Tidal Flat Deposits) Analysis

Contaminant	Max.	Min.	SSV (µg/l)	No. of Exceedances	DWS ⁽⁴⁾ (µg/l)	No. of Exceedances
Antimony	7.3	0.9	5(4)	1	-	-
Arsenic	49.8	2.91	25 ⁽¹⁾	1	-	-
Barium	140	24	700 ⁽³⁾	0	-	-
Beryllium	< 0.1(6)	< 0.1(6)	12(3)	0	-	-
Boron	610	130	7000(1)	0	-	-
Cadmium	0.07	< 0.02(6)	0.2(1)	0	-	-
Chromium	0.6	< 0.2(6)	4.7(1)	0	-	-
Copper	1.8	< 0.5(6)	3.76 ⁽¹⁾	0	-	-
Cobalt	12	2.2	3.0 ⁽¹⁾	5	-	-
Lead	5.7	0.2	1.3 ¹⁾	1	10	0
Manganese	5200	1200	-	-	-	-
Mercury	< 0.05(6)	< 0.05(6)	0.07(2)	0	-	-
Nickel	14	1.8	8.6(1)	2	20	0
Selenium	6.2	< 0.6%	10(4)	0	-	-
Vanadium	6.4	1.1	100(1)	0	-	-
Zinc	8.8	1.5	6.8(1)	2	-	-
Cyanide (Total)	<10(6)	<10(6)	1(1,7)	6	50	0
Total Phenol (Monohydric)	<10(6)	<10(6)	7.7(1,7)	6	-	-
Sulphate	833000	16600	400000(1)	1	-	-
Sulphide	54	< 5.0%	-	-	-	-
Ammoniacal Nitrogen as NH ₄	7400	<15(6)	-	-	-	-
H	7.8	7.1	-	-	-	-
Naphthalene	5.37	< 0.01(6)	4.0(4)	1	-	-
Acenaphthylene	6.16	< 0.01(6)	-	-	-	-
Acenaphthene	3.48	< 0.016)	-	-	-	-
Fluorene	9.34	< 0.01(6)	-	-	-	-
Phenanthrene	39.1	< 0.01(6)	-	-	-	-
Anthracene	23.6	< 0.01(6)	0.1(1)	4	-	-
Fluoranthene	75.9	< 0.01(6)	-	-	-	-
Pyrene	69.9	< 0.01(6)	-	-	-	-
Benzo(a)anthracene	31.5	< 0.01(6)	-	-	-	-
Chrysene	32.4	< 0.01(6)	-	-	-	-
Benzo(b)fluoranthene	32.4	< 0.01(6)	-	-	-	-
Benzo(k)fluoranthene	8.86	< 0.01(6)	-	-	-	-
Benzo(a)pyrene	20.5	< 0.01(6)	0.00017 ^(1,7)	6	0.01(4)	5
Indeno(1,2,3-cd)pyrene	7.07	< 0.01(6)	-	-	-	-
Benzo(g,h,i)perylene	9.67	< 0.01(6)	-	-	-	-
Dibenz(a,h)anthracene	2.5	< 0.01(6)	-	-	-	-
Total PAH	357	< 0.16(6)	-	-	-	-
TPH-CWG - Aliphatic >EC5 - EC6	< 1.0 ⁽⁶⁾	< 1.0(6)	15000 ⁽³⁾	0	-	-
TPH-CWG - Aliphatic >EC6 - EC8	< 1.0 ⁽⁶⁾	< 1.0(6)	15000 ⁽³⁾	0	-	-
TPH-CWG - Aliphatic >EC8 - EC10	<1.0 ⁽⁶⁾	<1.0 ⁽⁶⁾	300(3)	0	-	-
TPH-CWG - Aliphatic >EC10 - EC12	<10 ⁽⁶⁾	<10 ⁽⁶⁾	300 ⁽³⁾	0	-	-
TPH-CWG - Aliphatic >EC12 - EC16	<10 ⁽⁶⁾	<10 ⁽⁶⁾	300 ⁽³⁾	0	-	_
TPH-CWG - Aliphatic >EC16 - EC21	<10 ⁽⁶⁾	<10 ⁽⁶⁾	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	<10 ⁽⁶⁾	<10 ⁽⁶⁾				_
TPH-CWG - Aromatic >EC5 - EC7	<1.0 ⁽⁶⁾	<1.0 ⁽⁶⁾	- 10 ⁽³⁾	0	_	

Contaminant	Max.	Min.	SSV (µg/l)	No. of Exceedances	DWS ⁽⁴⁾ (µg/l)	No. of Exceedances
TPH-CWG - Aromatic >EC7 - EC8	<1.0 ⁽⁶⁾	< 1.0 ⁽⁶⁾	700 ⁽³⁾	0	-	-
TPH-CWG - Aromatic >EC8 - EC10	<1.0(6)	< 1.0(6)	300(3)	0	-	-
TPH-CWG - Aromatic >EC10 - EC12	43	<10(6)	500 ⁽³⁾	0	-	-
TPH-CWG - Aromatic >EC12 - EC16	300	<10(6)	90 ⁽³⁾	3	-	-
TPH-CWG - Aromatic >EC16 - EC21	2800	<10(6)	90 ⁽³⁾	3	-	-
TPH-CWG - Aromatic >EC21 - EC35	820	<10(6)	90 ⁽³⁾	2	-	-
Benzene	<1.0 ⁽⁶⁾	<1.0 ⁽⁶⁾	8(1)	0	-	-
Toluene	<1.0(6)	< 1.0(6)	74(1)	0	-	-
Ethylbenzene	<1.0 ⁽⁶⁾	<1.0 ⁽⁶⁾	300(3)	0	-	-
p & m-xylene	<1.0 ⁽⁶⁾	<1.0 ⁽⁶⁾	30(1)	0	-	-
o-xylene	<1.0(6)	<1.0(6)			-	-
MTBE	<1.0 ⁽⁶⁾	<1.0 ⁽⁶⁾	15 ⁽⁸⁾	0	-	-
Mineral Oil(C10-C40)	<10(6)	<10(6)	-	-	-	-
Diesel Range Organics (C10-C25)	3100	<10(6)	-	-	-	-

Notes:

1

2 3

EQS, Annual Average (AA) – Coastal Waters EQS, Maximum Allowable Concentrations (MAC) – Coastal Waters WHO Guidelines for Drinking Water Quality (2008) Water Supply (Water Quality) Regulations 2018 – Drinking Water Standards (DWS) EQS, Annual Average (AA) – Freshwater Laboratory Limit of Detection Laboratory Limit of Detection greater than SSV 4 5

6

7

8 WHO Taste and Odour Threshold Values

Deeper Groundwater (Superficial Sand/Gravels and South Wales Middle coal Measure Formation) Analysis

Contaminant	Max.	Min.	SSV	No. of	DWS ⁽⁴⁾	No. of
	IVIAA.	IVIIII.	(µg/l)	Exceedances	(µg/I)	Exceedances
Antimony	0.6	< 0.4(6)	5(4)	0	-	-
Arsenic	2.93	0.96	25(1)	0	-	-
Barium	97	26	700 ⁽³⁾	0	-	-
Beryllium	< 0.1(6)	< 0.1%	12(3)	0	-	-
Boron	1000	420	7000 ⁽¹⁾	0	-	-
Cadmium	0.24	< 0.02(6)	0.2(1)	1	5	0
Chromium	< 0.2(6)	< 0.2(6)	4.7 ⁽¹⁾	0	-	-
Copper	0.7	< 0.5(6)	3.76 ⁽¹⁾	0	-	-
Cobalt	3.9	2.9	3.0(1)	3	-	-
Lead	< 0.2(6)	< 0.2(6)	1.3 ¹⁾	0	-	-
Manganese	4400	1400	-	-	-	-
Mercury	< 0.05(6)	< 0.05(6)	0.07 ⁽²⁾	0	-	-
Nickel	6.3	1.6	8.6(1)	0	-	-
Selenium	7.8	2.6	10(4)	0	-	-
Vanadium	1.2	< 0.2(6)	100(1)	0	-	-
Zinc	6.0	1.5	6.8(1)	0	-	-
Cyanide (Total)	<10(6)	<10(6)	1(1,7)	4	50	0
Total Phenol (Monohydric)	<10(6)	<10(6)	7.7 ^(1,7)	4	-	
Sulphate	411000	142000	400000(1)	1	-	-
Sulphide	< 5.0(6)	< 5.0(6)	-	-	-	-
Ammoniacal Nitrogen as NH ₄	4400	2200	-	-	-	-
pH	7.3	6.8	_	-	-	-
Naphthalene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	4.0(4)	0	-	-
Acenaphthylene	< 0.01(6)	< 0.01 ⁽⁶⁾	-	-		-
Acenaphthene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	-	-		-
Fluorene	< 0.01(6)	< 0.01 ⁽⁶⁾	-	-		-
Phenanthrene	< 0.01(6)	< 0.01(6)	-	-	-	-
Anthracene	< 0.01(6)	< 0.01(6)	0.1 ⁽¹⁾	0	-	-
Fluoranthene	< 0.01(6)	< 0.01(6)	-	-		-
Pyrene	< 0.01(6)	< 0.01(6)	-	-		-
Benzo(a)anthracene	< 0.01(6)	< 0.01 ⁽⁶⁾	-	-		
Chrysene	< 0.01(6)	< 0.01 ⁽⁶⁾	-	-		-
Benzo(b)fluoranthene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	-	-		-
Benzo(k)fluoranthene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	-	-		-
Benzo(a)pyrene	< 0.01(6)	< 0.01 ⁽⁶⁾	0.00017(1,7)	4	0.01(4)	0
Indeno(1,2,3-cd)pyrene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	-	-		-
Benzo(g,h,i)perylene	< 0.01(6)	< 0.01 ⁽⁶⁾	-	-		-
Dibenz(a,h)anthracene	< 0.01 ⁽⁶⁾	< 0.01 ⁽⁶⁾	-	-		
Total PAH	< 0.16 ⁽⁶⁾	< 0.16 ⁽⁶⁾				-
	<0.10 ⁽⁶⁾	<0.18 ⁽³⁾ <1.0 ⁽⁶⁾	- 15000 ⁽³⁾	- 0	-	-
TPH-CWG - Aliphatic >EC5 - EC6					-	-
TPH-CWG - Aliphatic >EC6 - EC8	<1.0 ⁽⁶⁾	<1.0 ⁽⁶⁾	15000 ⁽³⁾	0	-	-
TPH-CWG - Aliphatic >EC8 - EC10	<1.0 ⁽⁶⁾	<1.0 ⁽⁶⁾	300 ⁽³⁾	0	-	-
TPH-CWG - Aliphatic >EC10 - EC12	<10 ⁽⁶⁾	<10 ⁽⁶⁾	300 ⁽³⁾	0	-	-
TPH-CWG - Aliphatic >EC12 - EC16	<10 ⁽⁶⁾	<10 ⁽⁶⁾	300 ⁽³⁾	0	-	-
TPH-CWG - Aliphatic >EC16 - EC21	<10(6)	<10(6)	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	<10(6)	<10(6)	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7	<1.0 ⁽⁶⁾	< 1.0(6)	10(3)	0	-	-

Contaminant	Max.	Min.	SSV (µg/l)	No. of Exceedances	DWS ⁽⁴⁾ (µg/l)	No. of Exceedances
TPH-CWG - Aromatic >EC7 - EC8	< 1.0 ⁽⁶⁾	<1.0 ⁽⁶⁾	700 ⁽³⁾	0	-	-
TPH-CWG - Aromatic >EC8 - EC10	<1.0%	<1.0%	300(3)	0	-	-
TPH-CWG - Aromatic >EC10 - EC12	<10(6)	<10(6)	500 ⁽³⁾	0	-	-
TPH-CWG - Aromatic >EC12 - EC16	<10 ⁽⁶⁾	<10(6)	90 ⁽³⁾	0	-	-
TPH-CWG - Aromatic >EC16 - EC21	<10(6)	<10(6)	90 ⁽³⁾	0	-	-
TPH-CWG - Aromatic >EC21 - EC35	<10 ⁽⁶⁾	<10(6)	90 ⁽³⁾	0	-	-
Benzene	< 1.0(6)	<1.0 ⁽⁶⁾	8(1)	0	-	-
Toluene	<1.0%	<1.0(6)	74(1)	0	-	-
Ethylbenzene	<1.0 ⁽⁶⁾	<1.0 ⁽⁶⁾	300(3)	0	-	-
p & m-xylene	< 1.0(6)	<1.0 ⁽⁶⁾	20(1)	<u>_</u>	-	-
o-xylene	<1.0%	<1.0(6)	30 ⁽¹⁾	0	-	-
MTBE	<1.0(6)	<1.0 ⁽⁶⁾	15 ⁽⁸⁾	0	-	-
Mineral Oil(C10-C40)	<10(6)	<10(6)	-	-	-	-
Diesel Range Organics (C10-C25)	<10(6)	<10(6)	-	-	-	-

Notes:

EQS, Annual Average (AA) - Coastal Waters 1

2 3

ECS, Annual Average (AA) – Coastal Waters EQS, Maximum Allowable Concentrations (MAC) – Coastal Waters WHO Guidelines for Drinking Water Quality (2008) Water Supply (Water Quality) Regulations 2018 – Drinking Water Standards (DWS) EQS, Annual Average (AA) – Freshwater Laboratory Limit of Detection Laboratory Limit of Detection greater than SSV 4 5

6

7

8 WHO Taste and Odour Threshold Values

Appendix G

Project:	Phoenix Wharf	Gas analyser:	GFM 436	Preceding Weather Conditions		On-site weather conditions	General Site Conditions / Ground Conditions / On-site Activities
Project Number:	2111006.003	Condition:	Good	Atmospheric trend:	1026 - 1028hPa		
Location:	Port Talbot	Well Diameter:	50mm	Temperature range:	15 - 19°C	Dry and Sunny	
Test Date:	09/05/2022 - 10/05/2022	Wellhead Condition:	Good	Rainfall:	0 - 2.54mm		

SAS MONITORING TO BE UNDERTAKEN IN A	ACCORDANCE WITH T					Gas Concer	A							
Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)							Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate CH4 Qhg (I/hr)	Carbon Dioxide – Hazardous Flow Rate CO2 Qhg (I/hr)	Comments
		(l/hr)		CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)			CH4 Qng (I/nr)	Qing ((711)	
H ref: BH01	0	0	0	0.0	0.0	21.5	0.0	0	0					
	15	0	0	43.0	1.9	10.0	>>>.>	0	0					
ime: 16:47	30	0	0	44.0	1.7	10.9	>>>.>	0	0					
ine: 10.47	45	0	0	40.1	1.6	11.6	>>>.>	0	0					
tmospheric pressure (mb) before:	60	0	0	36.7	1.5	12.4	>>>.>	0	0					
020	120	0	0	30.0	1.2	13.9	>>>,>	0	0					
	180	0	0	27.6	1.1	14.4	>>>.>	0	0	2.754mbgl	18.89mbgl		<u></u>	
tmospheric preassure (mb) after:										2.754(10g)	10.0911061			
018														
ell Condition: Good														
ell Diameter: 50mm														

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	itrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
		(l/hr)	Dr (ra)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)		Borenole Depth	CH4 Qhg (I/hr)	Qhg (l/hr)	comments
BH ref: BH02	0	3.4	20	0.0	0.0	20.9	0.0	0	0					
birrei. brioz	15	2.1	10	59.4	4.7	5.9	>>>.>	0	240					
Time: 15:15	30	1.5	7	66.0	4.9	5.1	>>>.>	0	480					
Time. 13.15	45	2.1	10	66.5	4.9	5.0	>>>.>	0	620					
Atmospheric pressure (mb) before:	60	1.9	10	66.2	4.8	5.2	>>>.>	0	750					
1018	120	1.2	6	59.7	4.5	6.8	>>>.>	0	900	_				
	180	2.1	10	52.0	4.1	8.5	>>>.>	0	860	4.33	24.74	2.261	0.1666	
Atmospheric preassure (mb) after:	240	0	0	47.2	3.7	9.6	>>>.>	0	810	4.35	24.74	2.201	0.1000	
1018	300	0	0	43.3	3.5	10.6	>>>.>	0	740					
Well Condition: Good														
wen condition: Good														
Well Diameter: 50mm														

Perchala Information		Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
borenoie information	Time (3)	(l/hr)	Dr (ra)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Lever	Borenole Depth	CH4 Qhg (I/hr)	Qhg (l/hr)	comments
BH ref: BH03A	0	0	0	0.0	0.0	20.6	0.0	0	0					
birter. bridsk	15	0	0	35.0	1.1	12.0	>>>.>	0	0					
Time: 13:17	30	0	0	39.0	1.2	11.1	>>>.>	0	0					
mile. 15.17	45	0	0	39.0	1.1	11.1	>>>.>	0	0	1				
Atmospheric pressure (mb) before:	60	0	0	38.7	1.1	11.2	>>>,>	0	0	1				
1022	120	0	0	35.0	1.0	12.2	>>>,>	0	0	1				
	180	0	0	30.0	0.9	13.3	>>>,>	0	0	3.77	20.03			
Atmospheric preassure (mb) after:										3.77	20.05	0	0	
1021										1				
										1				
Well Condition: Good										1				
weil condition: Good										1				
Well Diameter: 50mm										1				
weii Diameter: Summ										1				

Project:	Phoenix Wharf	Gas analyser:	GFM 436	Preceding Weather Conditions		On-site weather conditions	General Site Conditions / Ground Conditions / On-site Activities
Project Number:	2111006.003	Condition:	Good	Atmospheric trend:	1026 - 1028hPa		
Location:	Port Talbot	Well Diameter:	50mm	Temperature range:	15 - 19°C	Dry and Sunny	
Test Date:	09/05/2022 - 10/05/2022	Wellhead Condition:	Good	Rainfall:	0 - 2.54mm		

GAS MONITORING TO BE UNDERTAKEN IN	ACCORDANCE WITH T	TEC METHOD STATEMENT												
Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
borenole information		(l/hr)	Dr (raj	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Lever	borenoie beptin	CH4 Qhg (I/hr)	Qhg (l/hr)	
3H ref: BH04	0	0	0	0.0	0.0	20.8	0.0	0	0					
iner. Briow	15	0	0	0.0	1.6	19.6	0.0	0	0					
ime: 14:18	30	0	0	0.0	1.7	19.4	0.0	0	0					
ine. 14.15	45	0	0	0.0	1.7	19.4	0.0	0	0					
tmospheric pressure (mb) before:	60	0	0	0.0	1.7	19.3	0.0	0	0					
018	120	0	0	0.0	1.8	19.3	0.0	0	0					
	180	0	0	0.0	1.8	19.2	0.0	0	0	5.674	19.31			
tmospheric preassure (mb) after:										5.074	19.51	0	0	
018														
/ell Condition: Good														
Veil Condition: Good														
Vell Diameter: 50mm														
ell Diameter: Summ														

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth		Carbon Dioxide – Hazardous Flow Rate CO2	Comments
borenole information	Time (3)	(l/hr)	Dr (raj	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Lever	Borenole Depth	CH4 Qhg (l/hr)	Qhg (l/hr)	comments
3H ref: WS01	0	0	0	0.0	0.0	20.5	0.0	0	0					
511EL W301	15	0	0	0.0	0.0	20.6	0.0	0	0					
Fime: 10:54	30	0	0	0.0	0.0	20.7	0.0	0	0					
ine. 10.54	45	0	0	0.0	0.0	20.7	0.0	0	0					
Atmospheric pressure (mb) before:	60	0	0	0.0	0.0	20.6	0.0	0	0					
1016	120	0	0	0.0	0.0	20.6	0.0	0	0					
	180	0	0	0.0	0.0	20.5	0.0	0	0	1.895	2.696		0	
Atmospheric preassure (mb) after:										1.855	2.050	0	0	
1018														
Well Condition: Good]				
wen conunion: 6000										1				
Well Diameter: 50mm										1				
weir Diameter: Somm										1				

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	trations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
Borenoie Information	Time (3)	(l/hr)	Dr (raj	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Lever	Borenole Depth	CH4 Qhg (I/hr)	Qhg (l/hr)	Comments
BH ref: WS03A	0	0	0	0.0	0.0	20.4	0.0	0	0					
birrei. W303A	15	0.1	0	0.0	0.0	20.5	0.0	0	0					
Time: 09:26	30	0	0	0.0	0.0	20.5	0.0	0	0					
iiiie. 05.20	45	0	0	0.0	0.0	20.5	0.0	0	0					
Atmospheric pressure (mb) before:	60	0	0	0.0	0.0	20.5	0.0	0	0					
1018	120	0	0	0.0	0.0	20.4	0.0	0	0					
	180	0	0	0.0	0.0	20.3	0.0	0	0	1.696	3.694		â	
Atmospheric preassure (mb) after:										1.090	5.094	0	0	
1016														
Well Condition: Good														
well condition: Good														
Well Diameter: 50mm														

Project:	Phoenix Wharf	Gas analyser:	GFM 436	Preceding Weather Conditions		On-site weather conditions	General Site Conditions / Ground Conditions / On-site Activities
Project Number:	2111006.003	Condition:	Good	Atmospheric trend:	1026 - 1028hPa		
Location:	Port Talbot	Well Diameter:	50mm	Temperature range:	15 - 19°C	Dry and Sunny	
Test Date:	09/05/2022 - 10/05/2022	Wellhead Condition:	Good	Rainfall:	0 - 2.54mm		

GAS MONITORING TO BE UNDERTAKEN IN A	ACCORDANCE WITH T	EC METHOD STATEMENT												
Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
		(l/hr)	()	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)			CH4 Qhg (I/hr)	Qhg (l/hr)	
3H ref: WS06	0	-10	-70	0.0	0.0	14.6	0.0	0	0					
	15	-4.8	-31	8.5	2.2	14.6	>>>.>	0	0					
ime: 07:30	30	-1.2	-6	10.3	2.3	14.1	>>>.>	0	0					
	45	-1.2	-6	10.5	2.3	14.0	>>>.>	0	0					
Atmospheric pressure (mb) before:	60	-1	-5	10.5	2.3	14.0	>>>.>	0	0					
016	120	-0.3	-1	10.6	2.3	13.6	>>>.>	0	0					
										0.345	5.835	0	0.0004	
tmospheric preassure (mb) after:												-		
017														
Vell Condition: Good														
Vell Diameter: 50mm														
en Blanceen Sonill														

Porebole Information	Borehole Information Time (s) Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments	
borenole mormation	Time (3)	(l/hr)	Dr (raj	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Level	Borenole Depth	CH4 Qhg (I/hr)	Qhg (l/hr)	connients
BH ref: WS07	0	0	0	0.0	0.1	20.4	0.0	0	0					
511EL W307	15	0	0	0.0	0.1	20.4	0.0	0	0					
Fime: 08:15	30	0	0	0.0	0.1	20.4	0.0	0	0					
ine: 08.15	45	0	0	0.0	0.1	20.4	0.0	0	0					
Atmospheric pressure (mb) before:	60	-0.2	-1	0.0	0.1	20.4	0.0	0	0]				
017	120	0	0	0.0	0.1	20.1	0.0	0	0	1				
	180	0	0	0.0	0.1	20.0	0.0	0	0	0.62	4.15			
Atmospheric preassure (mb) after:										0.62	4.15	0	0	
.017										1				
										1				
Mall Conditions Cond										1				
Well Condition: Good										1				
										1				
Vell Diameter: 50mm														

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
borenole information	Time (3)	(l/hr)	Dr (raj	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Level	Borenole Depth	CH4 Qhg (I/hr)	Qhg (l/hr)	comments
BH ref: WS10	0	0	0	0.0	0.0	20.5	0.0	0	0					
birtel. W310	15	0	0	0.0	0.0	20.5	0.0	0	0					
Time: 10:19	30	0	0	0.0	0.0	20.5	0.0	0	0					
Time: 10.19	45	0	0	0.0	0.0	20.5	0.0	0	0]				
Atmospheric pressure (mb) before:	60	0	0	0.0	0.0	20.5	0.0	0	0					
1017	120	0	0	0.0	0.0	20.4	0.0	0	0	1				
	180	0	0	0.0	0.0	20.3	0.0	0	0	2.095	4.92		0	
Atmospheric preassure (mb) after:										2.055	4.52	0	0	
1017										1				
]				
Well Condition: Good										1				
well condition: Good										1				
Nell Discustors Comm										1				
Well Diameter: 50mm										1				

Project:	Phoenix Wharf	Gas analyser:	GFM 436	Preceding Weather Conditions		On-site weather conditions	General Site Conditions / Ground Conditions / On-site Activities
Project Number:	2111006.003	Condition:	Good	Atmospheric trend:	1026 - 1028hPa		
Location:	Port Talbot	Well Diameter:	50mm	Temperature range:	15 - 19°C	Dry and Sunny	
Test Date:	09/05/2022 - 10/05/2022	Wellhead Condition:	Good	Rainfall:	0 - 2.54mm		

SAS MONITORING TO BE UNDERTAKEN IN A	CCORDANCE WITH T													
Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer				Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
	,	(l/hr)		CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)			CH4 Qhg (I/hr)	Qhg (l/hr)	
H ref: WS11	0	0.4	2	0.0	0.0	20.4	0.0	0	0					
	15	0.2	1	0.0	0.0	20.4	0	0	0					
me: 08:51	30	0.1	0	0.0	0.0	20.4	0	0	0					
ine. 08.51	45	0	0	0.0	0.0	20.4	0	0	0					
tmospheric pressure (mb) before:	60	0	0	0.0	0.0	20.4	0	0	0	1				
017	120	0	0	0.0	0.1	20.2	0	0	0					
	180	0	0	0.0	0.1	20.2	0	0	0	1.22	3.41		0.0004	
tmospheric preassure (mb) after:										1.22	5.41	0	0.0004	
017										1				
										1				
ell Condition: Good														
en condition: Good										1				
All Discostory Comm										1				
/ell Diameter: 50mm										1				

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth		Carbon Dioxide – Hazardous Flow Rate CO2	Comments
borenoie mormation	Time (3)	(l/hr)	Dr (ra)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Level	borenole bepth	CH4 Qhg (I/hr)	Qhg (l/hr)	connicito
												0	0	
												5	Ũ	
							1		1					

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	itrations			Groundwater Level	Borehole Depth		Carbon Dioxide – Hazardous Flow Rate CO2	Comments
Borenole mormation	Title (3)	(l/hr)	Dr (raj	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Lever	Borenole Depth	CH4 Qhg (l/hr)	Qhg (l/hr)	comments
													0	
													5	

Project:	Phoenix Wharf	Gas analyser:	GFM 436	Preceding Weather Conditions		On-site weather conditions	General Site Conditions / Ground Conditions / On-site Activities
Project Number:	2111006.003	Condition:	Good	Atmospheric trend:	1020 - 10215hPa		
Location:	Port Talbot	Well Diameter:	50mm	Temperature range:	13 - 15°C	Dry and Sunny	
Test Date:	17/05/2022	Wellhead Condition:	Good	Rainfall:	0 - 2.54mm		

GAS MONITORING TO BE UNDERTAKEN IN A	ACCORDANCE WITH T	EC METHOD STATEMENT												
Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
borchoic information		(l/hr)	51 (10)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)		borenoie beptir	CH4 Qhg (I/hr)	Qhg (l/hr)	
BH ref: BH01	0	0	0	0.0	0.0	20.9	0.0	0	0					
	15	0.1	0	0.0	0.1	20.9	0	0	0					
ime: 10:55	30	0.1	0	0.0	0.1	20.7	0	0	0					
ine. 10.55	45	0.1	0	0.0	0.1	20.7	0	0	0					
tmospheric pressure (mb) before:	60	0.1	0	0.0	0.0	20.7	0	0	0					
010	120	0	0	0.0	0.0	20.7	0	0	0					
	180	0	0	0.0	0.0	20.7	0	0	0	2.14	18.66	0	0.0001	
tmospheric preassure (mb) after:												-		
010														
/ell Condition: Good														
/ell Diameter: 50mm														
en Diameter. Somm														

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
borenoie mormation		(l/hr)	Dr (raj	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Lever	Borenole Depth	CH4 Qhg (I/hr)	Qhg (l/hr)	comments
BH ref: BH02	0	0	0	0.0	0.0	20.9	0.0	0	0					
birrei. brioz	15	3.3	18	74.9	6.5	1.1	>>>.>	0	410					
Time: 12:33	30	1.6	8	80.6	6.7	0.6	>>>.>	0	590					
Time: 12.55	45	1.8	10	81.0	6.6	1.0	>>>.>	0	830					
Atmospheric pressure (mb) before:	60	1.2	6	76.8	5.8	2.4	>>>.>	0	970					
1015	120	0.2	1	60.5	4.5	6.2	>>>.>	0	1050					
	180	0	0	49.6	3.9	8.6	>>>.>	0	930	3.95	24.46	2.673	0.2211	
Atmospheric preassure (mb) after:										5.95	24.40	2.675	0.2211	
1015														
Well Condition: Good														
wen conunion: 6000														
Well Discustors Course														
Well Diameter: 50mm														

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Conce	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
Borenole information	nine (s)	(l/hr)	Dr (ra)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Lever	Borenole Depth	CH4 Qhg (l/hr)	Qhg (l/hr)	conments
BH ref: BH03A	0	0	0	0.0	0.0	20.8	0.0	0	0					
STITEL BIOSA	15	0	0	18.6	0.8	15.9	>>>.>	0	0					
Time: 13:09	30	0	0	21.0	0.8	15.6	>>>.>	0	0					
Time: 15.09	45	0	0	20.2	0.8	15.9	>>>.>	0	0					
Atmospheric pressure (mb) before:	60	0	0	19.7	0.8	16.0	>>>,>	0	0					
1010	120	0	0	17.6	0.7	16.4	>>>,>	0	0	1				
	180	0	0	14.9	0.6	17.2	>>>,>	0	0	3.32	20.02			
Atmospheric preassure (mb) after:										5.52	20.02	0	0	
1010														
										1				
Nell Conditions Cond														
Well Condition: Good										1				
Kell Discustors Comm														
Well Diameter: 50mm														

Project:	Phoenix Wharf	Gas analyser:	GFM 436	Preceding Weather Conditions		On-site weather conditions	General Site Conditions / Ground Conditions / On-site Activities
Project Number:	2111006.003	Condition:	Good	Atmospheric trend:	1020 - 10215hPa		
Location:	Port Talbot	Well Diameter:	50mm	Temperature range:	13 - 15°C	Dry and Sunny	
Test Date:	17/05/2022	Wellhead Condition:	Good	Rainfall:	0 - 2.54mm		

GAS MONITORING TO BE UNDERTAKEN IN	CCORDANCE WITH	TEC METHOD STATEMENT												
Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
		(l/hr)		CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)			CH4 Qhg (I/hr)	Qhg (l/hr)	
BH ref: BH04	0	0	0	0.0	0.0	20.9	0.0	0	0					
birten bilos	15	0	0	50.5	2.1	7.9	>>>.>	0	0					
Time: 12:10	30	0	0	55.7	2.2	7.6	>>>.>	0	0					
Time: 12.10	45	0	0	55.7	2.1	7.9	>>>.>	0	0	1				
Atmospheric pressure (mb) before:	60	0	0	53.3	2.0	8.4	>>>.>	0	0	1				
1013	120	0	0	45.8	1.8	10.2	>>>.>	0	0]				
	180	0	0	39.0	1.5	11.7	>>>.>	0	0	5.27	19.35			
Atmospheric preassure (mb) after:										5.27	19.55	0	0	
1013										1				
]				
Well Condition: Good										1				
weil condition: Good										1				
Kell Discustory Form										1				
Well Diameter: 50mm										1				

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth		Carbon Dioxide – Hazardous Flow Rate CO2	Comments
borenole information	Time (s)	(l/hr)	Dr (raj	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Lever	Borenole Depth	CH4 Qhg (l/hr)	Qhg (l/hr)	comments
3H ref: WS01	0	0	0	0.0	0.0	20.9	0.0	0	0					
511EL W301	15	0	0	0.0	0.4	18.4	0.0	0	70					
Fime: 12:22	30	0	0	0.0	0.4	18.4	0.0	0	50					
inite. 12.22	45	0	0	0.0	0.4	18.5	0.0	0	40					
Atmospheric pressure (mb) before:	60	0	0	0.0	0.3	19.1	0.0	0	40					
1012	120	0	0	0.0	0.3	19.1	0.0	0	25					
	180	0	0	0.0	0.3	19.1	0.0	0	0	1.94	2.73		0	
Atmospheric preassure (mb) after:										1.54	2.75	0	0	
1015														
Well Condition: Good														
wen conunion: 6000														
Well Diameter: 50mm														
weir Diameter: Johim										1				

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
borenoie mormation	inne (3)	(l/hr)	Dr (raj	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Lever	Borenole Depth	CH4 Qhg (l/hr)	Qhg (l/hr)	connents
BH ref: WS03A	0	0	0	0.0	0.0	20.9	0.0	0	0					
birtel. W305A	15	0	0	0.0	1.1	18.2	0.0	0	0					
Time: 09:26	30	0	0	0.0	1.1	18.0	0.0	0	0					
iiiie. 05.20	45	0	0	0.0	1.2	17.9	0.0	0	0					
Atmospheric pressure (mb) before:	60	0	0	0.0	1.2	17.8	0.0	0	0					
1018	120	0	0	0.0	1.4	17.5	0.0	0	0					
ľ	180	0	0	0.0	1.6	17.2	0.0	0	0	1.82	2.37			
Atmospheric preassure (mb) after:										1.62	2.57	0	0	
1016														
Well Condition: Good														
well condition: Good														
Well Diameter: 50mm														

Project:	Phoenix Wharf	Gas analyser:	GFM 436	Preceding Weather Conditions		On-site weather conditions	General Site Conditions / Ground Conditions / On-site Activities
Project Number:	2111006.003	Condition:	Good	Atmospheric trend:	1020 - 10215hPa		
Location:	Port Talbot	Well Diameter:	50mm	Temperature range:	13 - 15°C	Dry and Sunny	
Test Date:	17/05/2022	Wellhead Condition:	Good	Rainfall:	0 - 2.54mm		

AS MONITORING TO BE UNDERTAKEN IN A	CCORDANCE WITH T	EC METHOD STATEMENT												
Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	trations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
		(l/hr)	51 (10)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)		Borenoie Beptin	CH4 Qhg (I/hr)	Qhg (l/hr)	
H ref: WS06	0	0	0	0.0	0.0	21.0	0.0	0	0					
161. W300	15	0	0	0.0	0.2	21.0	0	0	0	1				
me: 11:18	30	0	0	0.0	0.2	20.8	0	0	0					
ine. 11.15	45	0	0	0.0	0.2	20.8	0	0	0					
tmospheric pressure (mb) before:	60	0	0	0.0	0.2	20.8	0	0	0]				
10	120	0	0	0.0	0.1	20.8	0	0	0					
	180	0	0	0.0	0.1	20.8	0	0	0	0.32	3.14	0	0	
mospheric preassure (mb) after:										0.52	5.14		5	
10										1				
ell Condition: Good														
en contration. Good]				
ell Diameter: 50mm														
Demeter. Somil														

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
Borenoie mornation		(l/hr)	Dr (ra)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Glouidwater Lever	Borenole Depth	CH4 Qhg (I/hr)	Qhg (l/hr)	comments
BH ref: WS07	0	0	0	0.0	0.0	20.9	0.0	0	0					
birtei. woo	15	0	0	0.0	0.3	20.8	0.0	0	0					
Time: 11:08	30	0	0	0.0	0.2	20.8	0.0	0	0					
Time: 11.08	45	0	0	0.0	0.2	20.8	0.0	0	0					
Atmospheric pressure (mb) before:	60	0	0	0.0	0.1	20.8	0.0	0	0					
1010	120	0	0	0.0	0.1	20.9	0.0	0	0	1				
	180	0	0	0.0	0.0	20.8	0.0	0	0	0.55	3.22			
Atmospheric preassure (mb) after:										0.55	5.22	0	0	
1010										1				
										1				
Well Condition: Good										1				
well condition: Good										1				
										1				
Well Diameter: 50mm														

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Conce	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
Borenole information	rine (s)	(l/hr)	Dr (ra)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Lever	Borenole Depth	CH4 Qhg (I/hr)	Qhg (l/hr)	comments
BH ref: WS10	0	0	0	0.0	0.0	20.9	0.0	0	0					
BH Tel. W310	15	0	0	0.0	1.2	18.1	0.0	0	0					
Time: 12:54	30	0	0	0.0	1.3	17.8	0.0	0	0					
nine: 12.54	45	0	0	0.0	1.4	17.6	0.0	0	0					
Atmospheric pressure (mb) before:	60	0	0	0.0	1.5	17.3	0.0	0	0					
1010	120	0	0	0.0	2.0	16.2	0.0	0	0					
	180	0	0	0.0	2.4	14.8	0.0	0	0	Dry	4.91			
Atmospheric preassure (mb) after:										Diy	4.51	0	0	
1010														
Well Condition: Good														
weil condition: Good														
Nell Discontract Comm														
Well Diameter: 50mm														

Project:	Phoenix Wharf	Gas analyser:	GFM 436	Preceding Weather Conditions		On-site weather conditions	General Site Conditions / Ground Conditions / On-site Activities
Project Number:	2111006.003	Condition:	Good	Atmospheric trend:	1020 - 10215hPa		
Location:	Port Talbot	Well Diameter:	50mm	Temperature range:	13 - 15°C	Dry and Sunny	
Test Date:	17/05/2022	Wellhead Condition:	Good	Rainfall:	0 - 2.54mm		

GAS MONITORING TO BE UNDERTAKEN IN	ACCORDANCE WITH	TEC METHOD STATEMENT												
Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer				Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
		(l/hr)	()	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)			CH4 Qhg (l/hr)	Qhg (l/hr)	
BH ref: WS11	0	0	0	0.0	0.0	20.8	0.0	0	0					
	15	0	0	0.0	0.8	20.2	0.0	0	0					
ime: 11:39	30	0	0	0.0	0.8	20.2	0.0	0	0					
inite. 11.55	45	0	0	0.0	0.8	20.2	0.0	0	0					
Atmospheric pressure (mb) before:	60	0	0	0.0	0.8	20.1	0.0	0	0					
.010	120	0	0	0.0	0.9	20.0	0.0	0	0	1				
	180	0	0	0.0	0.9	19.9	0.0	0	0	1.82	2.37			
Atmospheric preassure (mb) after:										1.02	2.37	0	0	
.010														
										1				
Vell Condition: Good										1				
veil condition: Good										1				
Well Diameter: 50mm										1				
ven Diameter: Somm										1				

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth		Carbon Dioxide – Hazardous Flow Rate CO2	Comments
borenole mormation	Time (3)	(l/hr)	Dr (ra)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)		borenole Depth	CH4 Qhg (I/hr)	Qhg (l/hr)	comments
												0	0	

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
	Time (s)	(l/hr)	Dr (ra)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Lever	Borenole Depth	CH4 Qhg (l/hr)	Qhg (l/hr)	comments
												0	0	
												-	-	

Project:	Phoenix Wharf	Gas analyser:	GFM 436	Preceding Weather Conditions		On-site weather conditions	General Site Conditions / Ground Conditions / On-site Activities
Project Number:	2111006.003	Condition:	Good	Atmospheric trend:	1000 - 1013hPa (Falling)		
Location:	Port Talbot	Well Diameter:	50mm	Temperature range:	11 - 13°C	Overcast	
Test Date:	24/05/2022	Wellhead Condition:	Good	Rainfall:	0 - 2.54mm		

AS MONITORING TO BE UNDERTAKEN IN A	ACCORDANCE WITH	TEC METHOD STATEMENT												
Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Conce	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
borenoie information		(l/hr)	Dr (ra)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Lever	Borenole Depth	CH4 Qhg (l/hr)	Qhg (l/hr)	
ref: BH01	0	0.4	2	0.0	0.0	21.1	0.0	0	0					
Tel. Dilot	15	0	0	0.0	0.0	20.7	0.0	0	0	1				
ne: 11:00	30	0.1	0	0.0	0.1	20.6	0.0	0	0					
me: 11.00	45	0.1	0	0.0	0.1	20.6	0.0	0	0]				
mospheric pressure (mb) before:	60	0	0	0.0	0.0	20.6	0.0	0	0]				
12	120	0	0	0.0	0.0	20.6	0.0	0	0					
	180	0	0	0.0	0.0	20.6	0.0	0	0	2.22	18.59	0	0.0004	
mospheric preassure (mb) after:]	10.55	5	0.0004	
12										1				
ell Condition: Good]				
ell Diameter: 50mm]				
a Dameter: Sound]				

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
borenoie mormation		(l/hr)	Dr (ra)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Level	borenole Depth	CH4 Qhg (I/hr)	Qhg (l/hr)	conments
BH ref: BH02	0	0	0	0.0	0.0	20.4	0.0	0	0					
birtei. brioz	15	0	0	64.0	5.9	3.5	>>>.>	0	230					
Time: 12:59	30	0	0	71.1	6.0	3.1	>>>.>	0	420					
Time: 12.59	45	0	0	65.8	5.0	5.1	>>>.>	0	600					
Atmospheric pressure (mb) before:	60	0	0	60.2	4.7	6.4	>>>.>	0	690					
1005	120	0	0	49.3	4.1	8.3	>>>.>	0	800					
	180	0	0	39.4	3.4	10.9	>>>.>	0	730	4.82	24.235			
Atmospheric preassure (mb) after:										4.62	24.235	0	0	
1005														
Well Condition: Good														
wen condition: 3000														
Well Discussion Comm														
Well Diameter: 50mm														

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Conce	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
borenole information	Time (3)	(l/hr)	Dr (ra)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Level	Borenole Depti	CH4 Qhg (l/hr)	Qhg (l/hr)	connents
BH ref: BH03A	0	0	0	0.0	0.0	20.5	0.0	0	0					
bh feil bhusa	15	0	0	0.0	0.7	20.8	0.0	0	0					
Time: 12:00	30	0	0	0.0	0.9	20.5	4.5	0	0					
mile. 12.00	45	0	0	0.2	0.9	20.5	10.9	0	0					
Atmospheric pressure (mb) before:	60	0	0	0.6	1.0	20.4	16.7	0	0					
1007	120	0	0	0.1	1.2	20.5	12.4	0	0					
	180	0	0	0.0	1.4	20.6	0.0	0	0	4.4	20.01			
Atmospheric preassure (mb) after:										4.4	20.01	0	0	
1007														
Well Condition: Good														
wen condition: 0000														
Well Diameter: 50mm										1				
wen biameter: somm														

Project:	Phoenix Wharf	Gas analyser:	GFM 436	Preceding Weather Conditions		On-site weather conditions	General Site Conditions / Ground Conditions / On-site Activities
Project Number:	2111006.003	Condition:	Good	Atmospheric trend:	1000 - 1013hPa (Falling)		
Location:	Port Talbot	Well Diameter:	50mm	Temperature range:	11 - 13°C	Overcast	
Test Date:	24/05/2022	Wellhead Condition:	Good	Rainfall:	0 - 2.54mm		

GAS MONITORING TO BE UNDERTAKEN IN	ACCORDANCE WITH	TEC METHOD STATEMENT												
Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
		(l/hr)	Dr (raj	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Lever	borenoie beptit	CH4 Qhg (I/hr)	Qhg (l/hr)	
BH ref: BH04	0	0	0	0.0	0.1	20.4	0.0	0	0					
birren brios	15	0	0	12.2	2.1	4.6	>>>.>	0	0					
Time: 12:41	30	0	0	71.9	2.5	3.9	>>>.>	0	0					
Time: 12.41	45	0	0	71.3	2.4	4.4	>>>.>	0	0					
Atmospheric pressure (mb) before:	60	0	0	69.0	2.4	4.9	>>>.>	0	0					
1007	120	0	0	58.7	2.1	7.3	>>>.>	0	0					
	180	0	0	49.0	1.8	9.4	>>>.>	0	0	5.4	19.37			
Atmospheric preassure (mb) after:										3.4	15.57	0	0	
1006														
Well Condition: Good														
Wen Condition. Good										1				
Well Diameter: 50mm														
wen Dameter: Somm]				

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth		Carbon Dioxide – Hazardous Flow Rate CO2	Comments
borenole information	Time (s)	(l/hr)	Dr (raj	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Gi Guildwaler Lever	Borenole Depth	CH4 Qhg (I/hr)	Qhg (l/hr)	comments
3H ref: WS01	0	0	0	0.0	0.1	20.1	0.0	0	0					
511EL W301	15	0	0	0.0	0.0	21.1	0.0	0	70					
Fime: 12:50	30	0	0	0.0	0.0	21.0	0.0	0	50					
inite: 12.50	45	0	0	0.0	0.0	20.9	0.0	0	40					
Atmospheric pressure (mb) before:	60	0	0	0.0	0.0	20.9	0.0	0	40					
1006	120	0	0	0.0	0.0	20.9	0.0	0	25					
	180	0	0	0.0	0.0	20.9	0.0	0	0		2.62		0	
Atmospheric preassure (mb) after:										ź	2.02	0	U	
1003														
Well Condition: Good														
wen conurtion: 6000														
Well Diameter: 50mm														
wen Diameter: Johim										1				

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
Borenoie information	Time (s)	(l/hr)	Ur (raj	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Lever	Borenole Deptin	CH4 Qhg (I/hr)	Qhg (l/hr)	Comments
BH ref: WS03A	0	0	0	0.0	0.1	20.6	0.0	0	0					
birren. woosk	15	0	0	0.0	1.8	16.9	0.0	0	0					
Time: 12:22	30	0	0	0.0	1.9	16.5	0.0	0	0					
11116. 12.22	45	0	0	0.0	1.9	16.4	0.0	0	0					
Atmospheric pressure (mb) before:	60	0	0	0.0	1.9	16.4	0.0	0	0					
1007	120	0	0	0.0	1.9	16.4	0.0	0	0					
	180	0	0	0.0	1.9	16.4	0.0	0	0	1.88	2.35			
Atmospheric preassure (mb) after:										1.88	2.35	0	0	
1005														
Well Condition: Good														
Well Diameter: 50mm														

Project:	Phoenix Wharf	Gas analyser:	GFM 436	Preceding Weather Conditions		On-site weather conditions	General Site Conditions / Ground Conditions / On-site Activities
Project Number:	2111006.003	Condition:	Good	Atmospheric trend:	1000 - 1013hPa (Falling)		
Location:	Port Talbot	Well Diameter:	50mm	Temperature range:	11 - 13°C	Overcast	
Test Date:	24/05/2022	Wellhead Condition:	Good	Rainfall:	0 - 2.54mm		

GAS MONITORING TO BE UNDERTAKEN IN A	ACCORDANCE WITH	TEC METHOD STATEMENT												
Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Conce	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
Borenoie mornation		(l/hr)	Dr (Fa)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Lever	Borenole Depth	CH4 Qhg (I/hr)	Qhg (l/hr)	
H ref: WS06	0	0	0	0.0	0.0	20.3	0.0	0	0					
11el. W300	15	-11	0	0.0	0.3	20.5	0.0	0	0	1				
me: 11:21	30	-3.7	0	0.0	0.3	20.3	0.0	0	0					
ine. 11.21	45	-1	0	0.0	0.4	20.3	0.0	0	0					
tmospheric pressure (mb) before:	60	0	0	0.0	0.4	20.2	0.0	0	0					
011	120	0	0	0.0	0.5	20.2	0.0	0	0					
										0.37	2.93	0	0	
mospheric preassure (mb) after:												-		
11														
ell Condition: Good]				
ell Diameter: 50mm														

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
borenole mormation	Time (3)	(l/hr)	Dr (raj	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Gi ounuwater Lever	Borenole Depth	CH4 Qhg (I/hr)	Qhg (l/hr)	comments
BH ref: WS07	0	0	0	0.0	0.0	21.0	0.0	0	0					
Siriei. w307	15	0	0	0.0	0.3	20.7	0.0	0	0					
Fime: 11:12	30	0	0	0.0	0.3	20.6	0.0	0	0					
inne: 11.12	45	0	0	0.0	0.3	20.5	0.0	0	0					
Atmospheric pressure (mb) before:	60	0	0	0.0	0.3	20.5	0.0	0	0					
012	120	0	0	0.0	0.3	20.5	0.0	0	0					
	180	0	0	0.0	0.3	20.5	0.0	0	0	0.69	3.195			
Atmospheric preassure (mb) after:										0.69	3.195	0	0	
.011														
										1				
Mall Conditions Cond														
Well Condition: Good														
										1				
Vell Diameter: 50mm														

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
Borenole mormation	rine (s)	(l/hr)	Dr (ra)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Lever	Borenole Deptin	CH4 Qhg (I/hr)	Qhg (l/hr)	connents
BH ref: WS10	0	0	0	0.0	0.1	20.4	0.0	0	0					
511EL W310	15	0	0	0.0	2.3	15.2	0.0	0	0					
Time: 12:31	30	0	0	0.0	2.4	14.5	0.0	0	0					
nine: 12.51	45	0	0	0.0	2.4	14.2	0.0	0	0					
Atmospheric pressure (mb) before:	60	0	0	0.0	2.5	14.2	0.0	0	0					
1006	120	0	0	0.0	2.8	13.7	0.0	0	0	1				
	180	0	0	0.0	3.2	13.0	0.0	0	0	2.12	4.8			
Atmospheric preassure (mb) after:										2.12	4.0	0	0	
1007														
Well Condition: Good														
well condition: Good														
Well Diameter: 50mm														
Vell Diameter: 50mm														

Project:	Phoenix Wharf	Gas analyser:	GFM 436	Preceding Weather Conditions		On-site weather conditions	General Site Conditions / Ground Conditions / On-site Activities
Project Number:	2111006.003	Condition:	Good	Atmospheric trend:	1000 - 1013hPa (Falling)		
Location:	Port Talbot	Well Diameter:	50mm	Temperature range:	11 - 13°C	Overcast	
Test Date:	24/05/2022	Wellhead Condition:	Good	Rainfall:	0 - 2.54mm		

GAS MONITORING TO BE UNDERTAKEN IN	ACCORDANCE WITH	TEC METHOD STATEMENT												
Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments
		(l/hr)	Dr (ra)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Lever	Borenoie Depti	CH4 Qhg (I/hr)	Qhg (l/hr)	
BH ref: WS11	0	0	0	0.0	0.0	20.5	0.0	0	0					
birten tisti	15	0	0	0.0	0.7	20.2	0.0	0	0					
Time: 12:14	30	0	0	0.0	0.9	20.0	0.0	0	0					
11110-12.14	45	0	0	0.0	0.9	19.9	0.0	0	0					
Atmospheric pressure (mb) before:	60	0	0	0.0	1.0	19.8	0.0	0	0					
1006	120	0	0	0.0	1.2	19.6	0.0	0	0					
	180	0	0	0.0	1.4	19.4	0.0	0	0	1.28	3.015			
Atmospheric preassure (mb) after:										1.20	5.015	0	0	
1006														
Well Condition: Good														
Wen Condition: Good														
Well Diameter: 50mm														
wen plameter: sonm										1				

Borehole Information	Time (s)	Borehole Flow Rate	DP (Pa)			Gas Concer	ntrations			Groundwater Level	Borehole Depth		Carbon Dioxide – Hazardous Flow Rate CO2	Comments
borenole information	Time (3)	(l/hr)	Dr (ra)	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	Groundwater Lever	Borenole Depth	CH4 Qhg (I/hr)	Qhg (l/hr)	comments
												0		
												0		
										1				
			1											
]				
										1				

Borehole Information	Time (s) Borehole Flow Rate	orehole Flow Rate DP (Pa)	Gas Concentrations				Groundwater Level Borehole De	Borehole Depth	Methane - Hazardous Flow Rate	Carbon Dioxide – Hazardous Flow Rate CO2	Comments				
borenole information	Time (3)	(l/hr)	Dr (raj	CH4 (%v/v)	CO2 (%v/v)	O2 (%v/v)	LEL (%)	CO (ppm)	H2S (ppm)	CH4 Qhg (/hr) Qhg (/hr)	comments				
													1		
												0	0		

Appendix H

Risk Methodologies and Evaluation

Risk Evaluation

The qualitative assessment methodology presented in CIRIA publication C552 (2001) titled *'Contaminated Land Risk Assessment: A Guide to Good Practice'* has been used by TEC for the basis of evaluating potential risk.

The method requires an assessment of the:

- magnitude of the probability or likelihood of the risk occurring (Table 1); and
- magnitude of the potential consequence or severity of the risk occurring (Table 2)

Table 1. Classification of Probability						
Classification	Definition					
High likelihood	There is a pollution linkage and an event that either appears very likely in the short-term and almost inevitable over the long-term, or there is evidence at the receptor of harm or pollution.					
Likely	There is a pollution linkage and all the elements are present and in the right place, which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short-term and likely over the long-term.					
Low likelihood	There is a pollution linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a longer period such an event would take place, and is less likely in the short-term.					
Unlikely	There is a pollution linkage but circumstances are such that it is improbable that an event would occur even in the very long-term.					

Table 1. Classification of Probability

Table 2. Classification of Consequence

Classification	Definition	Examples
Severe	Short-term (acute) risk to human health likely to result in "significant harm" as defined by the Environment Protection Act 1990, Part IIA. Short- term risk of pollution of sensitive water resource. (Note: Water Resources Act contains no scope for considering significance of pollution). Catastrophic damage to buildings/property. A short-term risk to a particular ecosystem, or organisation forming part of such ecosystem (note: the definitions of ecological systems within the draft circular on Contaminated Land, DETR, 2000).	High concentrations of cyanide on the surface of an informal recreation area. Major spillage of contaminants from site into controlled water. Explosion, causing building collapse (can also equate to a short-term human health risk if buildings are occupied).
Medium	Chronic damage to human health ("significant harm" as defined in DETR, 2000). Pollution of sensitive water resources. (Note: Water Resources Act contains no scope for considering significance of pollution). A significant change in a particular ecosystem, or organism forming part of such ecosystem, (note: the definitions of ecological systems within draft circular on Contaminated Land, DETR, 2000).	Concentration of a contaminant from site exceeding the generic or site-specific assessment criteria. Leaching of contaminants from a site to a major or minor aquifer. Death of a species within a designated nature reserve.
Mild	Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ("significant harm" as defined in the draft circular on Contaminated Land, DETR, 2000). Damage to sensitive buildings/structures/services or the environment.	Pollution of non-classified groundwater. Damage to building rendering it unsafe to occupy (for example foundation damage resulting in instability).
Minor	Harm, although not necessarily significant harm, which may result in a financial loss, or expenditure to resolve. Non-permanent health effects to human health (easily prevented by means such as personal protective clothing etc), easily repairable effects of damage to buildings, structures and services.	The presence of contaminants at such concentrations that protective equipment is required during site works. The loss of plants in a landscaping scheme. Discolouration of concrete.

The combination of the two factors is determined using Table 3 and the resulting level of risk is described in Table 4. The evaluation can be applied to each of the scenarios identified in the risk model and the overall risk assessed.

		Consequence							
		Severe	Medium	Mild	Minor				
	High Likelihood	Very High Risk	High Risk	Moderate Risk	Moderate/Low Risk				
Probability	Likely	High Risk	Moderate Risk	Moderate/Low Risk	Low Risk				
Proba	Low Likelihood	Moderate Risk	Moderate/Low Risk	Low Risk	Very Low Risk				
	Unlikely	Moderate/Low Risk	Low Risk	Very Low Risk	Very Low Risk				

Table 4. Description of risks and likely action required

Very High Risk	There is a high probability that severe harm could arise to a designated receptor from an identified hazard, or there is evidence that severe harm to a designated receptor is currently happening. This risk, if realised, is likely to result in a substantial liability. Urgent investigation (if not undertaken already) and remediation are likely to be required.
High Risk	Harm is likely to arise to a designated receptor from an identified hazard. Realisation of the risk is likely to present a substantial liability. Urgent investigation (if not undertaken already) is required and remedial works may be necessary in the short-term and are likely over the longer-term.
Moderate Risk	It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Investigation (if not already undertaken) is normally required to clarify the risk and to determine the potential liability. Some remedial works may be required in the long-term.
Low Risk	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised, would at worst normally be mild.
Very Low Risk	There is a low possibility that harm could arise to a receptor. In the event of such harm being realised it is not likely to be severe.

Using the risk model the pollutant linkages are identified and a preliminary estimate of risk undertaken. If there is no pollutant linkage identified, then there is no risk. If the estimate of risk for all the linkages and exposure scenarios is very low at this stage then it is likely that no further assessment will be required.

Greenfield runoff estimation for s

www.uksuds.com | Greenfield runc

Calculated by:	faye tomal	n	Site Details					
Site name:	Project Dra	igon	Latitude:	51.5834				
Site location:	Port Talbot		Longitude:	3.78416°				
This is an estimation of the greenfi practice criteria in line with Enviror for developments", SC030219 (2013) statutory standards for SuDS (Defra may be the basis for setting conse sites.	nment Agency gu) , the SuDS Manu a, 2015). This info	idance "Rainfall rund al C753 (Ciria, 2015) ; rmation on greenfie	off management Reference: and the non- Id runoff rates	13149327 Jun 07 2023 08				
Runoff estimation approach		FEH Statistical						
Site characteristics	6		Notes					
Total site area (ha):	9.95		(1) Is Q _{BAR} < 2.0 l/s/ha?					
Methodology								
Q _{MED} estimation method:	Calculate f	rom BFI and	When Q_{BAR} is < 2.0 l/s/ha then limiting discharge					
BFI and SPR method:	Specify BFI	manually	rates are set at 2.0 l/s/ha.					
HOST class:	N/A		(2) Are flow rates < 5.0 l/s? Where flow rates are less than 5.0 l/s consent					
BFI / BFIHOST:	0.726							
Q _{MED} (I/s):			for discharge is usually set at 5.0 l/s					
Q _{BAR} / Q _{MED} factor:	1.08		from vegetation and other materials is possible. Lower consent flow rates may be set where the					
Hydrological characteristics	Default	Edited	blockage risk is addressed by using a drainage elements.					
SAAR (mm):	1176	1143						
Hydrological region:	9	9	(3) Is SPR/SPRHOST ≤ 0.3?					
Growth curve factor 1 year.	0.88	0.88	Where groundwater levels are low er	nough the				
Growth curve factor 30 years:	1.78	1.78	use of soakaways to avoid discharge					
Growth curve factor 100 years:	2.18	2.18	would normally be preferred for disp surface water runoff.	osal of				
Growth curve factor 200 years:	2.46	2.46						

Greenfield runoff	rates _{Def}	fault Edited
Q _{BAR} (I/s):		37.74
1 in 1 year (l/s):		33.21
1 in 30 years (l/s):		67.18
1 in 100 year (l/s):		82.28
1 in 200 years (l/s):		92.85

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	ENGINEER REFERENCE							Page
Project	Unit No	Doc. Type	Type Code		Serial No		2	1 of 33
202947C	050	PP				00814		
CLIENT REFEREN	VCE							
Project Code	Area/Facility Cod	Facility Code Originator		Discip	oline	Do	ос Туре	Sequential No

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

Pages modified under this revision:

2	03/08/2023	IFFC Issued For Feed (Consolidated)	A. Elsalakawy	B. Lynskey	M. Allan			
1	06/06/2023	IFFC Issued For Feed (Consolidated)	C.Laquel	D. Paris	M. Allan			
0	12/04/2023	IFRC Issued For Review (Consolidated)	S. DJEROUROU	N. DJERAMBETE	C. LAQUEL			
Rev	Date DD/MM/YY	STATUS	WRITTEN BY (name & sign)	CHECKED BY (name & sign)	APPROVED BY (name & sign)			
	DOCUMENT REVISIONS							

Sections changed in last revision are identified by a vertical line in the margin

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	RENCE					Rev.	Page	
Project	Unit No	Doc. Type	Code	Serial	Serial No			
202947C	050	PP		008	14	2	2 of 33	
CLIENT REFEREN	ICE							
Project Code	Area/Facility Cod	e Originato	or Disc	ipline	Do	ос Туре	Sequential No	

CONTENTS

	1.	INTRODUCTION						
	2.	SCOF	PE OF DOCUMENT	4				
	3.	DEFI	NITIONS AND ABBREVIATIONS	4				
		3.1	Definitions	4				
		3.2	Abbreviations	5				
	4.	REFE	RENCE DOCUMENTS	6				
		4.1	CONTRACTOR Specific Reference Documents (Hold):	7				
	5.	FRAM	IEWORK ENVIRONMENTAL MANAGEMENT PLANS	8				
	6.	FINAL	CONSTRUCTION ENVIRONMENTAL MANAGEMENT PLAN	10				
	7.	POLICY AND PLANNING						
		7.1	Environmental Policy Statement	11				
		7.2	Sustainability Policy Statement	11				
		7.3	CEMP Implementation	11				
	8.	ENVI	RONMENTAL MANAGEMENT RESPONSABILITIES	14				
	9.	DETA	ILED CONTRACTOR RESPONSIBILITIES PRIOR TO CONSTRUCTION	19				
	10.	DETA	ILED CONTRACTOR RESPONSIBILITIES DURING CONSTRUCTION	20				
	11.	CONS	STRUCTION PLANNING	21				
	12.	CONS	STRUCTION LAYDOWN AND WELFARE FACILITIES	23				
	13.	TRAF	FIC MANAGEMENT AND OFF SITE DELIVERY ROUTES	23				
	14.	SPOII	_ MANAGEMENT	24				
	15.	ENVI	RONMENTAL CONTROL PLANS	27				
	APPE	NDIX A	: CONTRACTOR HSES POLICY	28				
	APPE	NDIX B	: ESG ROADMAP 2022-2023	30				
APPENDIX C: PROJECT SUSTAINABILITY POLICY [HOLD]								

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page
Project	Unit No	Doc. Type	Code	Seria	l No		3 of 33
202947C	050	PP		300	314	2	
CLIENT REFERENCE	CE						
Project Code	Area/Facility Code	e Originato	Originator Discipline		Do	ос Туре	Sequential No

Table of Holds

Reference	Page No	Description

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page
Project	Unit No	Doc. Type	Code	Seria	al No	2	4 6 6 6
202947C	050	PP		00	00814		4 of 33
CLIENT REFERENCE							
Project Code	Area/Facility Coo	de Originato	Originator Discipline		Do	ос Туре	Sequential No

1. INTRODUCTION

LanzaTech UK Ltd is exploring the installation of a 30M gal/year (ca. 115million litres/year) Alcohol-to-Jet (ATJ) plant in Port Talbot, Wales. The ATJ plant is to consist of two technologies, an Ethanol to Ethylene (ETE) and a Ethylene to Jet Fuel (ETJ) technology. A project feasibility study was completed in 2018.

This Framework CEMP provides the initial plan based on the FEED project definition. A final CEMP, taking account of the detailed engineering design and outcomes of the Environmental Statement will be developed in due course. T.EN will support the planning and permitting process which is seen as a key success factor for the project. T.EN shall provide inputs to this process to support the third-party subcontractors which have been employed by LanzaTech for the project.

2. SCOPE OF DOCUMENT

The scope of this document is to describe the Environmental Management Plan requirements for Construction activities.

The procedures contained and referenced within this Framework CEMP do not prejudice any statutory requirements and guidelines that might be in force anytime within the Project life. Relevant impacts from new legislation or change of standards will be communicated to staff through project bulletins and training as required. These will also be included within a revision of CEMP where they impact the works.

This Framework CEMP will be reviewed on a minimum annual basis or in response to any significant changes, e.g. changes to site activities, legal and client requirements or immediately following a significant environmental incident.

3. DEFINITIONS AND ABBREVIATIONS

3.1 Definitions

COMPANY: LanzaTech

CONTRACTOR: Technip Energies

Construction Subcontractor: TBC

Information contained in this document is the work product of one or more legal entities of the Technip Energies and embodies confidential and proprietary information of the applicable entity and/or its client. Use of this information is restricted in accordance with conditions specified by the contract. Technip Energies and its affiliates disclaim any and all liabilities for any changes or modifications to this document which are made by any person other than the entity that issued the document under the applicable client contract.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page
Project	Unit No	Doc. Type	Code	Seria	il No		5 of 33
202947C	050	PP		00	814	2	
CLIENT REFERENCE							
Project Code	Area/Facility Cod	e Originato	Originator Discipli		oline Doc Type		Sequential No

3.2 Abbreviations

Abbreviation	Definition
AiP	Approval in Principle
BMS	Business Management System
BOD	Basis Of Design
BS	British Standards
СЕМР	Construction Environmental Management Plan
CWA	Construction Work Area
EDMS	Electronic Document Management System
EMP	Environmental Management Plan
EMS	Environmental Management System
ENVID	Environmental Aspect/Impact Identification
ES	Environmental Statement
FEED	Front End Engineering Design
НЕМР	Handover Environmental Management Plan
HGV	Heavy Goods Vehicle
KPI	Key Performance Indicator
MMS	Material Management System
NRW	Natural Resources Wales
RAMS	Risk Assessment and Method Statement
REAC	Register of Environmental Actions and Commitments
SOW	Scope Of Work
SPA	Supplementary Project Agreement

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page	
Project	Unit No	Doc. Type	C	Code	Seria	l No	n	
202947C	050	PP			00814		2	6 of 33
CLIENT REFERENCE								
Project Code	Area/Facility Cod	e Originate	or	Discip	oline	Do	ос Туре	Sequential No

ТВС	To Be Confirmed
WFD	Water Framework Directive

4. **REFERENCE DOCUMENTS**

Document N	Document Number				
COMPANY	CONTRACTOR				
	202947C-000-PP-00104	Project Execution Plan (for FEED)			
	202947C-050-PP-00903	FEED Construction and Commissioning Work Plan, organisation and Staffing			
	In 202947C-000-PP-00104	Project Controls Plan			
	202947C-050-PLG-00301	Consolidated Feed Project Master Schedule			
	202947C-000-RT-00803	Constructability Study Report			
	202947C-050-PP-00801	Project Construction Plan			
	202947C-050-PP-0814	Framework Construction Environmental Management Plan (this document)			
	202947C-050-PP-00811	HSE Site Security Plan			
	202947C-000-PP-00501	Project Quality Plan			
	202947C-050-PP-00802	Temporary Site Facilities Plan			

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page
Project	Unit No	Doc. Type	Code	Serial	No		
202947C	050	PP		008	00814		7 of 33
CLIENT REFERENCE							
Project Code	Area/Facility Code	e Originato	Originator Discipline		line Doc Type		Sequential No

4.1 CONTRACTOR Specific Reference Documents (Hold):

Document Number	Owner	Document Title
	Be issued during Execution preparation	Environmental Policy
	Be issued during Execution preparation	Sustainability Policy
	Be issued during Execution preparation	Project Management Plan
	Be issued during Execution preparation	Environmental Risks and Opportunities Assessment
	Be issued during Execution preparation	Environmental Incidents
	Be issued during Execution preparation	Major Pollution Incident Plan
	Be issued during Execution preparation	Emergency Spillage Response Plan
	Be issued during Execution preparation	Seven steps for Environmental incident planning
	Be issued during Execution preparation	Example operational Environmental Incident Action
	Be issued during Execution preparation	Environmental Incident Severity Classification Table
	Be issued during Execution preparation	Environment Incident Regulator Reporting Thresholds
	Be issued during Execution preparation	Environmental Incident Reporting Guidance for strators
	Be issued during Execution preparation	Incident Reporting and Investigation
	Be issued during Execution preparation	Risk Assessment & Method Statement
	Be issued during Execution preparation	Site Induction Records
	Be issued during Execution preparation	Environmental Training Records

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page
Project	Unit No	Doc. Type	Code	Seria	l No	2	8 of 33
202947C	050	PP		800	814	2	
CLIENT REFERENCE							
Project Code	Area/Facility Code	Originato	Originator Discipline		Do	с Туре	Sequential No

Be issued during Execution preparation	Plant Maintenance and Defect Reports
Be issued during Execution preparation	Waste Carrier Licences, Waste Transfer Notes, Consignment Notes, Environmental Permits,
Be issued during Execution preparation	Environmental Complaints regarding site activities
Be issued during Execution preparation	Environmental Inspections and Audits
Be issued during Execution preparation	Environmental Briefings / Toolbox Talks
Be issued during Execution preparation	Emergency Response Plan
Be issued during Execution preparation	Project Organisation and Emergency Arrangements Chart
Be issued during Execution preparation	Personnel Emergency Evacuation Plan
Be issued during Execution preparation	Monitoring / Sampling Results required for Consent / Permit /Licence compliance

5. FRAMEWORK ENVIRONMENTAL MANAGEMENT PLANS

A framework Construction Environmental Management Plan (CEMP) has been produced at the FEED phase. The "Framework CEMP" is a document containing a series of outline environmental management plans and related documents for the Proposed Development, which is produced by the Project/COMPANY during the design stage of the Proposed Development.

The framework CEMP demonstrates how the commitments in the ES could be implemented. It also sets out the monitoring and auditing activities designed to demonstrate that such mitigation measures are carried out and that they are effective and how mitigation measures to reduce environmental impacts during the construction phase will be delivered and how compliance with environmental legislation will be reached.

The framework CEMP sets out a series of proposed measures that would be applied by the contractor to provide effective planning, management and control during

Information contained in this document is the work product of one or more legal entities of the Technip Energies and embodies confidential and proprietary information of the applicable entity and/or its client. Use of this information is restricted in accordance with conditions specified by the contract. Technip Energies and its affiliates disclaim any and all liabilities for any changes or modifications to this document which are made by any person other than the entity that issued the document under the applicable client contract.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE					Rev.	Page		
Project	Unit No	Doc. Type	(Code	Seria	l No	•	
202947C	050	PP			00814		2	9 of 33
CLIENT REFERE	NCE							
Project Code	Area/Facility Coo	le Originato	or	Discip	oline	Do	ос Туре	Sequential No

construction to control potential impacts upon people, businesses and the environment.

The framework CEMP sets out the approach that will be used by CONTRACTOR to update the document to the Final CEMP once the design and construction plans have been finalised at the Detailed Design stage. Procedures and mitigation measures summarised in this iteration of the CEMP (the final CEMP) will be mandatory.

This approach, where CONTRACTOR is responsible for preparing the CEMP, aims to ensure that all potential environmental impacts identified in the ES and at the Detailed Design stage are fully addressed and suitable mitigation measures implemented. Design development is assessed against the requirements assessed in these documents.

The final CEMP will be managed alongside the CONTRACTOR'S generic and sitespecific environmental management plan and systems, meeting ISO14001 requirements. The final CEMP will be a live document and must be maintained and updated throughout the life of the project by CONTRACTOR. Environmental mitigation measures identified must be followed by all parties.

Prior to the commencement of construction, the final CEMP will take account of detailed design and construction planning and the outcome of the planning process. It will be maintained and revised during the construction period to take account of any changes in design or external factors such as regulations and standards, any unforeseen circumstances as they arise, such as new protected species or new archaeological finds, and any failings in environmental performance identified from routine inspections and audits.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page	
Project	Unit No	Doc. Type	Co	ode	Seria	l No	0	10 (00
202947C	050	PP			00814		2	10 of 33
CLIENT REFEREN	VCE							
Project Code	Area/Facility Cod	le Originato	or	Discip	line	Do	ос Туре	Sequential No

6. FINAL CONSTRUCTION ENVIRONMENTAL MANAGEMENT PLAN

The final Construction Environmental Management Plan will be written at the detailed design stage and covers the main construction works.

The overall objectives of the final CEMP are to:

- to provide a mechanism for ensuring that measures to mitigate potentially adverse environmental impacts identified in the Environment Statement's (ES) are implemented,
- to ensure that good construction practices are adopted throughout the construction of the works,
- to provide a framework for mitigating impacts that may be unforeseen or that are not identified until construction is underway,
- to provide assurance to third parties that their requirements with respect to environmental performance will be met,
- to provide a mechanism for ensuring compliance with environmental legislation,
- to provide a framework for compliance auditing and inspection, to enable CPY and CTR to be assured that their aims with respect to environmental performance are being met,
- to provide trained and experienced environmental personnel to satisfy the requirements of the CPY Environmental Statement.

This Final CEMP takes due consideration of the assessments undertaken and reported within the published ES presented as part of planning application The final CEMP identifies mitigation and environmental issues associated with the following phases of construction:

- Prior to construction (e.g. advanced works, site preparation, vegetation clearance);
- During construction (e.g. works);
- Post construction, or pre-occupation, including demobilisation.

This final CEMP will be produced to ensure that all necessary measures identified during planning are incorporated into the project during the phases listed above. This

Information contained in this document is the work product of one or more legal entities of the Technip Energies and embodies confidential and proprietary information of the applicable entity and/or its client. Use of this information is restricted in accordance with conditions specified by the contract. Technip Energies and its affiliates disclaim any and all liabilities for any changes or modifications to this document which are made by any person other than the entity that issued the document under the applicable client contract.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Page
Project	Unit No	Doc. Type	Code	Serial No		11 of 33
202947C	050	PP		00814		
CLIENT REFEREI	VCE					
Project Code	Area/Facility Coo	le Originato	or Disc	pline	Doc Туре	Sequential No

final CEMP should also be read alongside the following key documents which are contained in the Appendices of this document (once developed these documents will be included in the final CEMP at execution Phase).

7. POLICY AND PLANNING

7.1 Environmental Policy Statement

The project has an Environmental Policy that meets the requirements of ISO 14001:2015. The policy statement will be displayed on the site notice boards, publicised to all site staff and operatives, and made available to interested parties upon request.

A copy of the CONTRACTOR Environmental policy is included in Appendix A.

7.2 Sustainability Policy Statement

The project has a ESG Road Map that supports its Sustainability objectives. The policy statement will be displayed on the site notice boards, publicised to all site staff and operatives, and made available to interested parties upon request.

A copy of the 2022/2023 CONTRACTOR ESG Roadmap is included in Appendix B

A copy of the Project Sustainability Policy is included in Appendix C (Hold).

7.3 CEMP Implementation

CONTRACTOR, along with all subcontractors and suppliers will comply with the requirements of the CEMP.

The CEMP is based on the 'Plan, Do, Check, Act' model and has been developed to incorporate and take account of the environmental requirements of International Standard ISO14001:2015 and the CONTRACTOR'S Management System.

LANZATECH

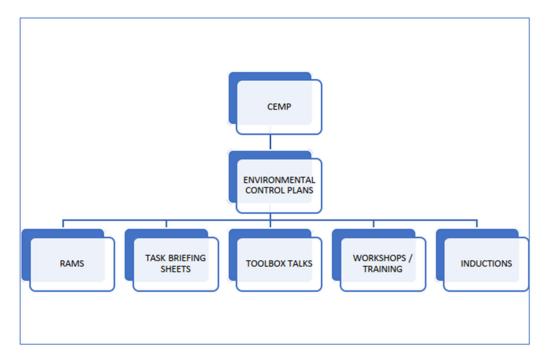
LanzaTech

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page	
Project	Unit No	Doc. Type	Coo	le	Seria	l No	2	10.000
202947C	050	PP			00814		2	12 of 33
CLIENT REFEREN	CE							
Project Code	Area/Facility Cod	e Originato	or	Discip	oline	Do	ос Туре	Sequential No

The CEMP provides a framework to manage all contract environmental requirements and applicable legislation. The CEMP is supported by Environmental Control Plans that define the arrangement to manage the project's environmental risks and support on site environmental performance. Task specific requirements are detailed within Risk Assessment and Method Statements (RAMS). Awareness of environmental controls will be communicated to those working for, or on behalf of the project via site induction, workshops/training, pre start briefings and tool box talks. This arrangement is shown below.


LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page	
Project	Unit No	Doc. Type	Co	ode	Seria	l No	2	10.000
202947C	050	PP			00814		2	13 of 33
CLIENT REFERENC	CE							
Project Code	Area/Facility Cod	e Originato	or	Discip	oline	Do	ос Туре	Sequential No

All contractors providing a product or service will be required to provide evidence to show how they will control their environmental risks if their activities are deemed to potentially create an environmental impact. This will be reviewed against this Final CEMP, relevant specification, Scope of Works (SOW) and legislative requirements, etc. by the project environmental team at the supplier approval stage.

Inspections and audits of site activities, management, training and documentation will be conducted in order to monitor compliance with the CEMP. All documentation will be saved in CONTRACTOR'S EDMS (GAIA). All supplier requirements are defined on the SDRL (Supplier document requirements list).

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE					Rev.	Page		
Project	Unit No	Doc. Type		Code	Seria	l No	2	4.4
202947C	050	PP			00814		2	14 of 33
CLIENT REFEREN	VCE							
Project Code	Area/Facility Coo	le Originat	or	Discip	oline	Do	ос Туре	Sequential No

8. ENVIRONMENTAL MANAGEMENT RESPONSABILITIES

Everyone working for, or on behalf of, the project has a responsibility for environmental performance. Site inductions will be delivered to the entire workforce, regardless of role, to raise awareness of measures/procedures/practices implemented through this plan.

COMPANY and delegated consultants acting on their behalf, CONTRACTOR and their subcontractors are all responsible for complying with the project's environmental policies, relevant environmental legislation and regulations. It is a requirement that all persons on site will be made aware of their duty of care to the environment and will be provided with sufficient training, supervision, or instruction through Site Inductions, Toolbox Talks and specific method statements as necessary.

Responsibilities for the site environmental management will be delegated to key personnel by CONTRACTOR who will manage all reporting and monitoring of environmental mitigation during the project. Where required, environmental specialists will be consulted to provide advice on specific issues or site activities, in consultation with CONTRACTOR.

The main environmental roles and responsibilities are shown in the table below.

Further details of responsibilities will be documented in individual job descriptions/appointment letters and for subcontractors, in their contract documentation.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page
Project	Unit No	Doc. Type	Code	Seria	l No	2	45 600
202947C	050	PP		000	00814		15 of 33
CLIENT REFEREN	ICE						
Project Code	Area/Facility Cod	e Originate	or Dis	cipline	Do	ос Туре	Sequential No

Role	Main responsibilities
CONTRACTOR Project Director	 Leadership and commitment to communicate and support the delivery of the works in line with the project's environmental and sustainability visions. Providing leadership and commitment with respect to the environmental management system. The environmental performance of the project and for encouraging others to improve the effectiveness of the EMS and performance. Promoting sustainable design and construction objectives. Setting the project's behavioural culture for sustainability, ensuring that all aspects of the final CEMP and Sustainability Action Plan are embraced by the delivery team, including the supply chain partners. Responsible for assigning appropriate roles and responsibilities within the Project Management Team that they adequately reflect the significant environmental risk and opportunities that have been identified to ensure that legal compliance obligations can be met and delivered. Providing direction to other supporting roles in the project to ensure overall targets are met. Ensuring that critical objectives, aspects, performance metrics and results are continually communicated effectively to all stakeholders. Ensuring continual improvement can be achieved.
CONTRACTOR HSES Manager	 Providing leadership and commitment with respect to the environmental management system (EMS). Overall responsibility for management of environmental matters Allocation of sufficient resources within the Health, Safety, Environment & Sustainability (HSES) Project Team. Resolution of findings from audits and inspections Chair monthly site HSES meeting. Supporting Environment & Sustainability Manager (E&SM) in meeting project E&S objectives.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page
Project	Unit No	Doc. Type	Code	Serial	No	0	10 (00
202947C	050	PP		008 [,]	00814		16 of 33
CLIENT REFEREI	VCE						
Project Code	Area/Facility Coo	le Originato	or Disc	ipline	Do	с Туре	Sequential No

CONTRACTOR Oversee the environmental components of the project.	
Environmental and Act as main contact for all environmental issues on site.	
Sustainability Manager Co-ordination of all environmental specialists to ensure compl	ance
with the environmental requirements of the project	
Co. ordinating site environmental management compliance	
CO-ordinating site environmental management compliance.	
	naanta
compliance with environmental legislation, best practice, or	insents,
• • • • • • • • • • • • • • • • • • • •	
Updating and reviewing the CEMP throughout the works.	
Ensuring the project team have sufficient environmental training	
co-ordinate delivery of additional training/inductions/Toolbo	x laiks
where required.	
Liaison with regulatory bodies.	
Reporting environmental near misses, incidents or supply cha	n
partner innovations.	- 4
Carry out an environmental review of suppliers and sub-contra	
To assess environment management system arrangements	sand
key policies.	_
Assessing and checking survey results and updating database	
Environmental Control Plans (ECPs) etc. with any new info	
To co-ordinate with the design and construction teams to ensu	
works are planned and delivered in accordance with legal a	and
contractual requirements.	
To undertake assurance activities such as periodic audits and	weekiy
inspections of work sites.	
To review documentation (incl. RAMS) for work activities.	danaaa
To facilitate the investigation of complaints, incidents or excee	
To provide support and direction to Stakeholder Manager to er compliance with the commitments register is achieved.	ISUIE
To review monitoring data as provided by Specialists.	
To monitor and report environmental performance of the suppl	v chain
To lead a positive environmental culture on the project to trans	
behaviours where required.	
To prepare environmental requirements for supply chain contra	acte
To undertake and co-ordinate specific environmental training t	othe
construction team and workforce as required.	
To attend site meetings.	
To advise on environmental best practice.	

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page
Project	Unit No	Doc. Type	Code	Serial	No	2	17 (00
202947C	050	PP		008	00814		17 of 33
CLIENT REFEREI	VCE						·
Project Code	Area/Facility Coo	le Originat	or Disc	cipline	Do	ос Туре	Sequential No

Role	Main responsibilities
CONTRACTOR Site HSE Advisor	 Providing support to the Environmental Manager. Provide site induction on environmental practices, toolbox talks, organise specialist surveys, and oversee monitoring and testing of materials as required. Monitor CONTRACTOR site environmental compliance, supervising works and construction activities on site, auditing/reviewing works and procedures including method statements as required. Ensure hours of working meet accepted noise and vibration limits set in consultation with Environmental Health Officer (EHO). Develop with Principal Contractor Site Health & Safety Officer, an Emergency Spillage Response Plan and associated protocols for incidents. Ensure Environment Agency and other stakeholder requirements are implemented for consents and permits. Recording and reporting the progress of environmental works. Report any product or service environment non-conformances.
CONTRACTOR Environmental Engineer (Ecologist, Landscape Architect, Archaeologist, Noise/Air Quality Specialist, Material/Waste Management Specialist, Contaminated Land Specialist, Occupational Health Specialist, etc.)	 Individual Environmental Specialists will be responsible for the inputs into the environmental assessment and final detailed designs. Will provide support to the construction project team in the form of preconstruction surveys, applications for licenses/consents, watching briefs and other specific issues such as protected species and landscape planting supervision. Oversee mitigation throughout the project. Provide specialist advice and instruction to the supply chain.
CONTRACTOR Community Liaison Officer (CLO)	 Key liaison with all the above and COMPANY'S Communications Lead, Stakeholder Lead and Customer lead. Single contact point on site for the community and general public. Maintain and develop Community Relations Strategy. Maintain comment and enquiries log and disseminate identified comment for response and implementation of action.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE	Re	ev.	Page			
Project	Unit No	Doc. Type	Code	Serial No		0	40.00
202947C	050	PP		00814		2	18 of 33
CLIENT REFERE	NCE						
Project Code	Area/Facility Coo	de Originato	or Disc	ipline	Doc Type		Sequential No

Role	Main responsibilities
Delivery Team (including Procurement Team)	 To attend the project induction prior to commencing work. To provide their own environmental management plan and risk assessments in RAMS as required. To promote a right first time approach. To ensure environmental sustainability reporting data is submitted accurately and on time. To ensure environmental measures are implemented in line with the method statements and risk assessments. To work considerately with a good working ethic to minimise adverse environmental impacts and follow all site rules communicated during the briefings and project training sessions. To adhere to instructions provided by an Ecological Clerk of Works, Archaeologist, etc. To report near misses, positive interventions and all incidents no matter how minor. To comply with any environmental consents required to complete the planned works.

Contact information for personnel with environmental responsibilities is as follows (Hold):

Name	Position	Organisation	Contact Details
	Project Director	COMPANY	Email: Phone Number:
	Project Director	CONTRACTOR	Email: Phone Number:
	Site Manager	CONTRACTOR	Email: Phone Number:
	HSES Manager	CONTRACTOR	Email: Phone Number:
	Construction Manager	CONTRACTOR	Email: Phone Number:
	Community Liaison Officer	CONTRACTOR	Email: Phone Number:

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE		Rev.	Page			
Project	Unit No	Doc. Type	Code	Serial	No	0	40600
202947C	050	PP		008	00814		19 of 33
CLIENT REFEREN	ICE						
Project Code	Area/Facility Cod	e Originato	or Disc	ipline	Do	с Туре	Sequential No

9. DETAILED CONTRACTOR RESPONSIBILITIES PRIOR TO CONSTRUCTION

CONTRACTOR is responsible for approving the appointment of the Environment and Sustainability Manager/Director and any environmental specialists prior to any work starting on site.

CONTRACTOR is responsible for the following prior to construction commencement;

- Developing final CEMP (using this framework CEMP as a basis).
- Defining roles and responsibilities for their own and their key sub-contractors' personnel relating to environmental issues (see Section 8);
- Developing an environmental training plan covering all personnel;
- Developing a programme of internal and sub-contractor inspections/monitoring;
- Developing project-specific emergency procedures for environmental incidents;
- Finalising and implementing a programme for works to allow all preconstruction surveys to be arranged and completed within the required timeframe;
- Agreeing a non-compliance reporting procedure with The COMPANY to manage any environmental incidents or non-compliance events for the project; and
- Developing the required Environmental Control Plans (ECPs), see Section 7 for list. These will be updated as required up to construction commencement to reflect any new, relevant information provided by COMPANY or other statutory consultees (e.g. further consent conditions, landowner agreements) or through design development, construction planning, preconstruction surveys etc.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE		Rev.	Page				
Project	Unit No	Doc. Type	Code		Serial	No	0	00.100
202947C	050	PP			008	14	2	20 of 33
CLIENT REFEREN	NCE							
Project Code	Area/Facility Coo	le Originate	or	Discip	line	Do	с Туре	Sequential No

10. DETAILED CONTRACTOR RESPONSIBILITIES DURING CONSTRUCTION

CONTRACTOR is responsible on site for delivering the construction phase commitments in the ES and Register of Environmental Actions and Commitments (REAC), as described within the project design construction models, drawings and specifications, and controlled by this Framework CEMP.

CONTRACTOR will implement the procedures set out in this Framework CEMP with technical advice from competent environmental specialists.

CONTRACTOR is responsible for all their subcontractors on site and for ensuring these sub-contractors comply with the requirements of this Framework CEMP.

CONTRACTOR is responsible for ensuring that there are no breaches in legislation and that good practice is followed throughout the duration of the construction.

CONTRACTOR must ensure that all on-site works are adequately monitored.

Environmental Objectives & Targets will be developed in conjunction with CPY and will be reviewed on a monthly basis at the project progress meetings. A copy of the Project's Objectives and Targets, and associated progress reports, will be held in the Project Environmental Files and included in project monthly reports.

Risk Assessments & Method Statements (RAMS) and Environmental Control Plans (ECPs) and other associated documents (such as Section 61 of Control of Pollution Act 1974, Discharge consent by NRW, etc.) will be used to ensure all environmental commitments are delivered on site. The implementation of the requirements of the RAMS, ECPs and delivery of mitigation measures relating to the project will be the responsibility of CONTRACTOR.

Any improvements or deviations relating to environmental matters required to the RAMS and/or ECPs shall be approved by the Environment and Sustainability Manager (and may be subject to other consents where required). CONTRACTOR will provide regular feedback and information to COMPANY Project Manager and Environmental

Information contained in this document is the work product of one or more legal entities of the Technip Energies and embodies confidential and proprietary information of the applicable entity and/or its client. Use of this information is restricted in accordance with conditions specified by the contract. Technip Energies and its affiliates disclaim any and all liabilities for any changes or modifications to this document which are made by any person other than the entity that issued the document under the applicable client contract.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE		Rev.	Page				
Project	Unit No	Doc. Type	Code		Serial N	No	n	04.00
202947C	050	PP			0081	14	2	21 of 33
CLIENT REFEREI	VCE							
Project Code	Area/Facility Cod	e Originato	or	Disciplin	ne	Do	с Туре	Sequential No

Manager on the progress and success in delivering all mitigation and commitments on site.

The REAC will be updated to demonstrate progress and will be kept by the project for environmental auditing purposes, with updates periodically sent to COMPANY.

All site personnel have the responsibility and authority to halt works in any activity where environmental commitments are not being successfully delivered or where legal requirements are being breached.

All site personnel will be encouraged to draw attention to any environmental risk or potential environmental risk arising on site (for example, refuelling being carried out too close to a watercourse or working outside the agreed limits of deviation for any aspect of the works). This approach will be promoted in all site inductions and training.

11. CONSTRUCTION PLANNING

The current expectation is that the construction works will be split into phases with the following table providing an indicative construction programme.

Construction working hours will generally be:

- Monday to Friday 07:00 to 19:00 and
- Saturday 07:00 to 13:00,

however, it is likely that some construction activities will be required to be 24 hours at certain times. This is principally construction activities that cannot be stopped, such as concrete pouring. Where on-site works are to be conducted outside the core hours, they will comply with the restrictions stated in this Final CEMP and any other restrictions agreed with the planning authorities.

Activities that could generate a construction noise or light nuisance impact will be assessed for their potential impact prior to being undertaken at night, including but not limited to sheet piling, piling, use of impact wrenches, concrete scabbling, use of reversing sirens, and concrete jack hammering. Construction noise limits will need to be in compliance with the construction noise scheme agreed with relevant planning authority.

LANZATECH

LanzaTech

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	ENGINEER REFERENCE									
Project	Unit No	Doc. Type	Co	de	Seria	l No	2	00 (00		
202947C	050	PP			300	314	2	22 of 33		
CLIENT REFERENC	CE									
Project Code	Area/Facility Code	Originato	or	Discip	line	Do	ос Туре	Sequential No		

Indicative Construction Planning

The table below to be completed as part of Final CEMP during the detailed engineering phase.

	M-5	M-4	M-3	M-2	M-1	M1	M2	M3	M4	M5	M6	M7	M8	6M	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24
Enabling Works																													
Site Establishment																													
Construction																													
Utilities																													
Commissioning																													

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	RENCE		Rev.	Page			
Project	Unit No	Doc. Type	Code	Seria	al No		00.1.00
202947C	050	PP		00	814	2	23 of 33
CLIENT REFEREN	CE						·
Project Code	Area/Facility Cod	e Originato	or E	iscipline	Do	ос Туре	Sequential No

12. CONSTRUCTION LAYDOWN AND WELFARE FACILITIES

Proposed construction laydown areas, including storage, site offices, welfare facilities and car parking, will be located at various places within the site boundary.

13. TRAFFIC MANAGEMENT AND OFF SITE DELIVERY ROUTES

During construction, CONTRACTOR will ensure that the impacts from construction traffic on the local community (including local residents and businesses and users of the surrounding transport network) are minimised, where reasonably practicable. This will be ensured by implementing the measures set out in the Framework Construction Workers' Travel Plan (CWTP) and the Framework Construction Traffic Management Plan (CTMP) respectively; These plans will be developed from the Framework status to be included with this CEMP prior to the start of construction.

The Framework CTMP provides details of the designated routes for Heavy Vehicle movements and this will be set out in accordance with the Transport Assessment and Environmental Statement produced by others.

The use of port facilities are not considered to be part of the project logistic.

Final details of the designated routes for HGV movements and worker car movements will be detailed in the CWTP and CTMP prior site mobilization.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	RENCE	Rev.	Page					
Project	Unit No	Doc. Type	Code	Serial	No	2		
202947C	050	PP		008	00814		24 of 33	
CLIENT REFEREN	ICE		•					
Project Code	Area/Facility Cod	e Originato	or Disc	ipline	Do	ос Туре	Sequential No	

14. SPOIL MANAGEMENT

Spoil will arise from the construction activities of the project. The CONTRACTOR will take all reasonable measures to apply the waste hierarchy which is, in priority order, as follows:

During enabling works and construction, spoil arising will be temporarily stockpiled within the Site boundary before either beneficial re-use on site for use in development platform construction or being taken off-site by HGV for treatment and/or disposal at a local permitted facility (in the local area) or for reuse in other development sites in the area.

Spoil will be stockpiled in areas at low risk of flooding within the Site boundary on the site. The size of the stockpile(s) will be minimised where possible by excavation works being constructed in parallel with development platform construction which will utilise spoil arisings where these are geotechnically or chemically suitable.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE		Rev.	Page			
Project	Unit No	Doc. Type	Code	Seria	al No		05 (00
202947C	050	PP		00	814	2	25 of 33
CLIENT REFERE	NCE						·
Project Code	Area/Facility Coo	le Originato	or D	iscipline	D	ос Туре	Sequential No

In addition, there will be progressive off-site removal of geotechnically unsuitable or contaminated materials for re-use, treatment and/or disposal. Stockpile heights will therefore be low and there is sufficient area within the Site boundary to accommodate the volume of spoil expected to be generated.

Suitable measures will be put in place to prevent sediment being washed into watercourses, and the stockpiles will be visually monitored for wash away during and after periods of prolonged rainfall.

The nearest facility for excavated material surplus area is Briton Ferry Recycling Center at Port Talbot.

Spoil will be sampled and any contaminated spoil identified will be managed in accordance with the Site Waste Management Plan (SWMP), Material Management Plan (MMP), Site Preparation Plan and the Site Remediation Plan which will be prepared and appended to this Framework CEMP in the Execute phase.

A Framework Site Waste Management Plan (SWMP) has been developed as part of the Framework CEMP which allows for waste streams to be estimated and monitored and goals set with regards to the waste produced. The MMP will specify that any potentially contaminated soils will be managed in accordance with:

Defra Construction Code of Practice for the Sustainable Use of Soil on Development Sites

(Defra, 2009); and

Definition of Waste: Development Industry Code of Practice (CL:AIRE, 2011).

Any suspected contaminated spoil will be placed on an impermeable membrane to prevent the leaching of any contaminants into the subsurface or watercourses. Site specific Screening Verification Criteria for the classification of soils for re-use or disposal will be derived by the Applicants in accordance with the MMP.

All spoil will be processed and managed in accordance with The Waste (England and Wales) Regulations 2011 (as amended).

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE		Rev.	Page				
Project	Unit No	Doc. Type	Cod	de	Serial	No	2	00.00
202947C	050	PP			008	14	2	26 of 33
CLIENT REFEREN	VCE							
Project Code	Area/Facility Coo	le Originate	or	Discipl	ine	Do	с Туре	Sequential No

Recycling and Disposing of Waste

In order to control the waste generated on Site during site preparation and construction, CONTRACTOR will separate the main waste streams on Site, prior to them being taken to a waste facility for recycling or disposal. As outlined above spoil will be beneficially used onsite where possible to minimise the amount of spoil that requires treatment or disposing of offsite.

The Site Waste Management Plan (SWMP) appended to this Framework CEMP specifies the waste streams to be estimated and monitored and goals set with regards to the waste produced. Under the DCO requirements, the SWMP must be submitted to and approved by the relevant planning authority before construction works commence.

The SWMP requires the CONTRACTOR segregates waste streams on-site, prior to them being taken to a licensed waste facility for recycling or disposal. All waste to be removed from the Site will be undertaken by fully licensed waste carriers and taken to licensed waste facilities.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE					Rev.	Page
Project	Unit No	Doc. Type	Code	Seri	al No	2	07.00
202947C	050	PP		00	814	2	27 of 33
CLIENT REFEREN	VCE						·
Project Code	Area/Facility Coo	e Originato	or	Discipline	Do	ос Туре	Sequential No

15. ENVIRONMENTAL CONTROL PLANS

A project dedicated control plan will be developed for construction phase. This will take account of construction specific measures in the Environmental Management Plan (EMP) in accordance with the ES by others:

- Built Heritage and Archaeology
- Ground Conditions and Contamination
- Flood Risk and Hydrology
- Transport
- Lighting
- Terrestrial ecology
- Marine ecology
- Landscape and visual
- Socio-economics and human health
- Climate change
- Air quality
- Noise and vibration

Plan will detail the likely sources of emissions that may have an impact on these above Environmental Aspects and the steps that the construction team will put in place to manage and mitigate these.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE						Rev.	Page
Project	Unit No	Doc. Type		Code	Seria	l No	2	00 of 00
202947C	050	PP			00	314	2	28 of 33
CLIENT REFERE	NCE							
Project Code	Area/Facility Coo	le Originato	or	Discip	oline	Do	ос Туре	Sequential No

APPENDIX A: CONTRACTOR HSES POLICY

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	ENCE						Rev.	Page
Project	Unit No	Doc. Type		Code	Seria	l No	•	00 (00
202947C	050	PP			008	314	2	29 of 33
CLIENT REFERENC	CE						•	·
Project Code	Area/Facility Code	Originato	r	Discip	line	Do	ос Туре	Sequential No

Global HSE and Security Policy POL-COR-011-HSE-Rev.2 - Feb 2021

This policy defines Technip Energies absolute commitment to the Health, Safety, Environment and Security (HSES) of all those who can either directly or indirectly be affected by our business activities.

HSES is a key element of our foundational beliefs (combined under the Safety belief) and managed as an integral part of our business, therefore we must never compromise on health, safety, environment or security to achieve our objectives.

We are committed to fostering an incident-free environment worldwide, through:

- Our fundamental conviction that all incidents are preventable
- Setting health, safety, environmental and security objectives specific to Technip Energies for the scope of our activities and extending them in a life cycle perspective to achieve continual improvement of the HSES management system and to continually enhance our HSES performance
- · Fostering a leadership culture driven by engagement and accountability to ensure physical and mental health, safety, environment and security and a culture where we look after each other
- Committing and allocating adequate resources and expertise to continually and proactively eliminate hazards, reduce risks and prevent injury, ill health and environmental impact related to our activities, through engineering, process improvements, technologies and on-site execution
- Operating in a manner that protects the environment by providing sustainable solutions to minimize our carbon and environmental footprint while improving our energy and resource efficiency
- Securing our people, assets, technology, sensitive information and reputation
- Fulfilling, and when we deem necessary, exceeding legal, compliance and other obligations to meet our foundational beliefs
- Implementing and encouraging consultation and participation of workers.

Our success and continual improvement will be measured through the reduction of incidents, risks, and environmental footprint with clear and meaningful performance indicators.

HSES is everyone's responsibility. Every person is encouraged and expected to stop any work if they consider conditions are unsafe, in any way.

To comply with this policy is mandatory and the responsibility of all employees and all of those engaged and working to execute our activities. Visible commitment of management is the enabler of this compliance.

400

Arnaud Pieton Chief Executive Officer February 2021

Information contai

onfidential and

proprietary information of the applicable entity and/or its client. Use of this information is restricted in accordance with conditions specified by the contract. Technip Energies and its affiliates disclaim any and all liabilities for any changes or modifications to this document which are made by any person other than the entity that issued the document under the applicable client contract.

LANZATECH

LanzaTech

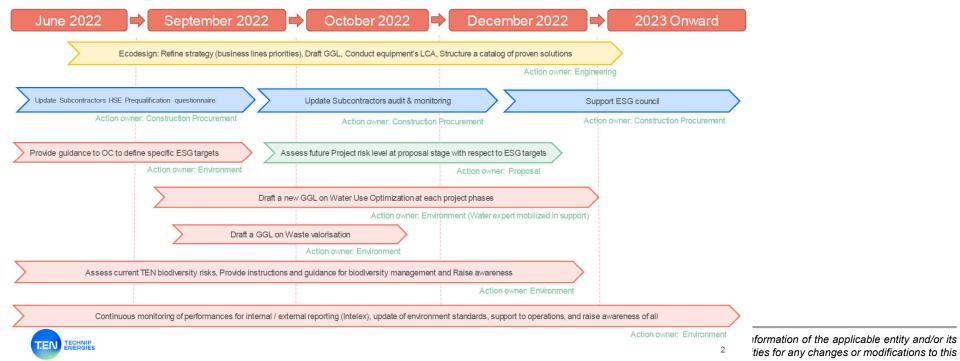
PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFEI	RENCE	Rev.	Page				
Project	Unit No	Doc. Type	Code	Seria	l No	2	00.100
202947C	050	PP		300	314	2	30 of 33
CLIENT REFEREN	ICE		•				
Project Code	Area/Facility Cod	e Originato	or Dis	scipline	Do	ос Туре	Sequential No

APPENDIX B: ESG ROADMAP 2022-2023

LANZATECH


LanzaTech

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	RENCE		Rev.	Page			
Project	Unit No	Doc. Type	Code	Serial N	lo	2	04.00
202947C	050	PP		0081	4	2	31 of 33
CLIENT REFEREN	CE						·
Project Code	Area/Facility Code	e Originato	or Disc	ipline	Doc Ty	ре	Sequential No

Environmental Action Plan 2022 - 2023

чосителя which are made by any person other than the entity that issued the document under the applicable cheric contract.

LANZATECH

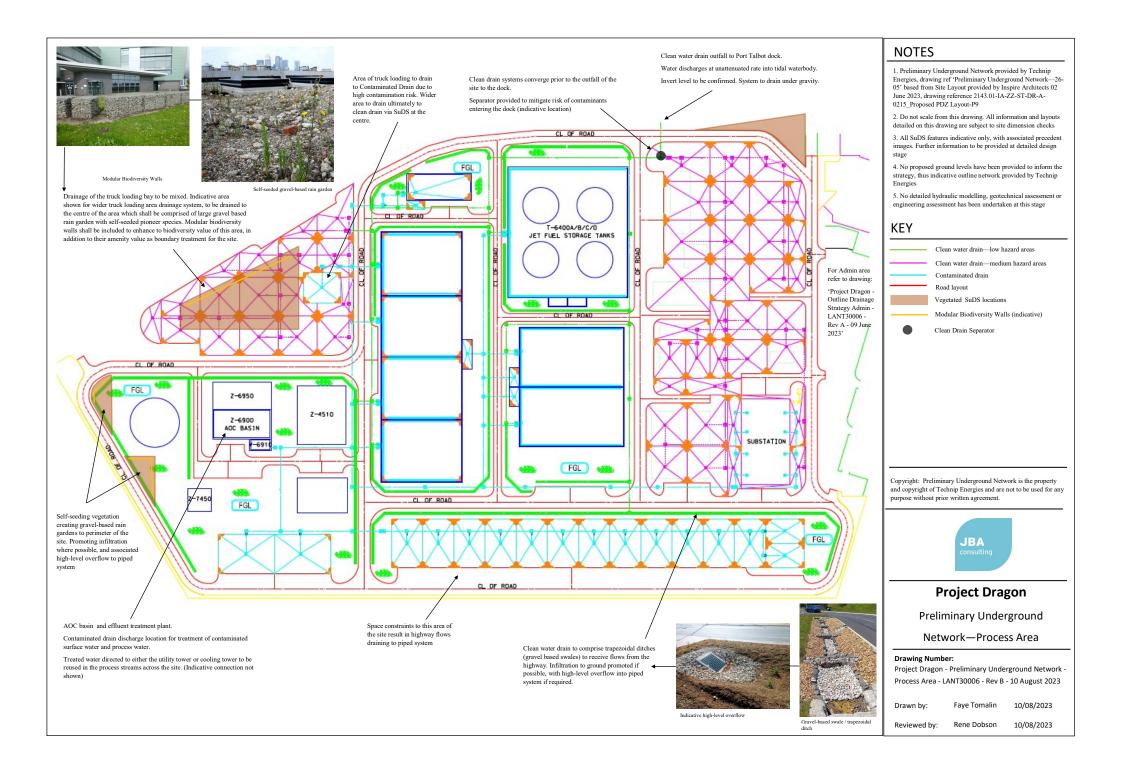
PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE					Rev.	Page
Project	Unit No	Doc. Type	Code	Serial	No	2	20 af 22
202947C	050	PP		008 [,]	14	2	32 of 33
CLIENT REFEREN	VCE			<u>.</u>			
Project Code	Area/Facility Cod	e Originato	or Disc	cipline	Do	с Туре	Sequential No

APPENDIX C: PROJECT SUSTAINABILITY POLICY [HOLD]

LANZATECH



PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	ENCE	Rev.	Page					
Project	Unit No	Doc. Type		Code	Seria	l No	•	00.000
202947C	050	PP			008	314	2	33 of 33
CLIENT REFERENC	CE							
Project Code	Area/Facility Code	e Originato	or	Discip	oline	Do	ос Туре	Sequential No

End of document

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE						Rev.	Page
Project	Unit No	Doc. Type		Code	Seria	il No	2	1 = 1 2 2
202947C	050	PP			008	314	2	1 of 33
CLIENT REFEREN	VCE							
Project Code	Area/Facility Cod	e Originato	or	Discip	oline	Do	ос Туре	Sequential No

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

Pages modified under this revision:

2	03/08/2023	IFFC Issued For Feed (Consolidated)	A. Elsalakawy	B. Lynskey	M. Allan
1	06/06/2023	IFFC Issued For Feed (Consolidated)	C.Laquel	D. Paris	M. Allan
0	12/04/2023	IFRC Issued For Review (Consolidated)	S. DJEROUROU	N. DJERAMBETE	C. LAQUEL
Rev	Date DD/MM/YY	STATUS	WRITTEN BY (name & sign)	CHECKED BY (name & sign)	APPROVED BY (name & sign)
		DOCUMENT	REVISIONS		

Sections changed in last revision are identified by a vertical line in the margin

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	RENCE	Rev.	Page				
Project	Unit No	Doc. Type	Code	Serial	No	•	0 . 4 0 0
202947C	050	PP		008	14	2	2 of 33
CLIENT REFEREN	ICE						
Project Code	Area/Facility Cod	e Originato	or Disc	ipline	Do	ос Туре	Sequential No

CONTENTS

1.	INTRO	DDUCTION	4
2.	SCOF	PE OF DOCUMENT	4
3.	DEFI	NITIONS AND ABBREVIATIONS	4
	3.1	Definitions	4
	3.2	Abbreviations	5
4.	REFE	RENCE DOCUMENTS	6
	4.1	CONTRACTOR Specific Reference Documents (Hold):	7
5.	FRAM	IEWORK ENVIRONMENTAL MANAGEMENT PLANS	8
6.	FINAL	CONSTRUCTION ENVIRONMENTAL MANAGEMENT PLAN	10
7.	POLIC	CY AND PLANNING	11
	7.1	Environmental Policy Statement	11
	7.2	Sustainability Policy Statement	11
	7.3	CEMP Implementation	11
8.	ENVI	RONMENTAL MANAGEMENT RESPONSABILITIES	14
9.	DETA	ILED CONTRACTOR RESPONSIBILITIES PRIOR TO CONSTRUCTION	19
10.	DETA	ILED CONTRACTOR RESPONSIBILITIES DURING CONSTRUCTION	20
11.	CONS	STRUCTION PLANNING	21
12.	CONS	STRUCTION LAYDOWN AND WELFARE FACILITIES	23
13.	TRAF	FIC MANAGEMENT AND OFF SITE DELIVERY ROUTES	23
14.	SPOII	_ MANAGEMENT	24
15.	ENVI	RONMENTAL CONTROL PLANS	27
APPE	NDIX A	: CONTRACTOR HSES POLICY	28
APPE	NDIX B	: ESG ROADMAP 2022-2023	30
APPE		: PROJECT SUSTAINABILITY POLICY [HOLD]	32

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	ENCE					Rev.	Page
Project	Unit No	Doc. Type	Code	Seria	l No		2
202947C	050	PP		300	314	2	3 of 33
CLIENT REFERENC	CE						
Project Code	Area/Facility Code	e Originato	or Dis	cipline	Do	ос Туре	Sequential No

Table of Holds

Reference	Page No	Description

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page
Project	Unit No	Doc. Type	Code	Seria	al No	2	
202947C	050	PP		00	00814		4 of 33
CLIENT REFERE	NCE						
Project Code	Area/Facility Coo	de Originato	Originator Discipline		Do	ос Туре	Sequential No

1. INTRODUCTION

LanzaTech UK Ltd is exploring the installation of a 30M gal/year (ca. 115million litres/year) Alcohol-to-Jet (ATJ) plant in Port Talbot, Wales. The ATJ plant is to consist of two technologies, an Ethanol to Ethylene (ETE) and a Ethylene to Jet Fuel (ETJ) technology. A project feasibility study was completed in 2018.

This Framework CEMP provides the initial plan based on the FEED project definition. A final CEMP, taking account of the detailed engineering design and outcomes of the Environmental Statement will be developed in due course. T.EN will support the planning and permitting process which is seen as a key success factor for the project. T.EN shall provide inputs to this process to support the third-party subcontractors which have been employed by LanzaTech for the project.

2. SCOPE OF DOCUMENT

The scope of this document is to describe the Environmental Management Plan requirements for Construction activities.

The procedures contained and referenced within this Framework CEMP do not prejudice any statutory requirements and guidelines that might be in force anytime within the Project life. Relevant impacts from new legislation or change of standards will be communicated to staff through project bulletins and training as required. These will also be included within a revision of CEMP where they impact the works.

This Framework CEMP will be reviewed on a minimum annual basis or in response to any significant changes, e.g. changes to site activities, legal and client requirements or immediately following a significant environmental incident.

3. DEFINITIONS AND ABBREVIATIONS

3.1 Definitions

COMPANY: LanzaTech

CONTRACTOR: Technip Energies

Construction Subcontractor: TBC

Information contained in this document is the work product of one or more legal entities of the Technip Energies and embodies confidential and proprietary information of the applicable entity and/or its client. Use of this information is restricted in accordance with conditions specified by the contract. Technip Energies and its affiliates disclaim any and all liabilities for any changes or modifications to this document which are made by any person other than the entity that issued the document under the applicable client contract.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page
Project	Unit No	Doc. Type	Code	Seria	il No	2	
202947C	050	PP		00	00814		5 of 33
CLIENT REFEREN	ICE						·
Project Code	Area/Facility Cod	e Originato	Originator Disciplin		line Doc Type		Sequential No

3.2 Abbreviations

Abbreviation	Definition
AiP	Approval in Principle
BMS	Business Management System
BOD	Basis Of Design
BS	British Standards
СЕМР	Construction Environmental Management Plan
CWA	Construction Work Area
EDMS	Electronic Document Management System
EMP	Environmental Management Plan
EMS	Environmental Management System
ENVID	Environmental Aspect/Impact Identification
ES	Environmental Statement
FEED	Front End Engineering Design
НЕМР	Handover Environmental Management Plan
HGV	Heavy Goods Vehicle
KPI	Key Performance Indicator
MMS	Material Management System
NRW	Natural Resources Wales
RAMS	Risk Assessment and Method Statement
REAC	Register of Environmental Actions and Commitments
SOW	Scope Of Work
SPA	Supplementary Project Agreement

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page	
Project	Unit No	Doc. Type	C	Code	Seria	l No	n	
202947C	050	PP			300	00814		6 of 33
CLIENT REFEREN	CE							
Project Code	Area/Facility Cod	e Originate	Originator Discip		line Doc Type		Sequential No	

ТВС	To Be Confirmed
WFD	Water Framework Directive

4. **REFERENCE DOCUMENTS**

Document N	umber	Document Title
COMPANY	CONTRACTOR	
	202947C-000-PP-00104	Project Execution Plan (for FEED)
	202947C-050-PP-00903	FEED Construction and Commissioning Work Plan, organisation and Staffing
	In 202947C-000-PP-00104	Project Controls Plan
	202947C-050-PLG-00301	Consolidated Feed Project Master Schedule
	202947C-000-RT-00803	Constructability Study Report
	202947C-050-PP-00801	Project Construction Plan
	202947C-050-PP-0814	Framework Construction Environmental Management Plan (this document)
	202947C-050-PP-00811	HSE Site Security Plan
	202947C-000-PP-00501	Project Quality Plan
	202947C-050-PP-00802	Temporary Site Facilities Plan

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page		
Project	Unit No	Doc. Type	Code	Serial	No				
202947C	050	PP		008	00814		7 of 33		
CLIENT REFEREN	CLIENT REFERENCE								
Project Code	Area/Facility Code	e Originato	Originator Discipline		ne Doc Type		Sequential No		

4.1 CONTRACTOR Specific Reference Documents (Hold):

Document Number	Owner	Document Title
	Be issued during Execution preparation	Environmental Policy
	Be issued during Execution preparation	Sustainability Policy
	Be issued during Execution preparation	Project Management Plan
	Be issued during Execution preparation	Environmental Risks and Opportunities Assessment
	Be issued during Execution preparation	Environmental Incidents
	Be issued during Execution preparation	Major Pollution Incident Plan
	Be issued during Execution preparation	Emergency Spillage Response Plan
	Be issued during Execution preparation	Seven steps for Environmental incident planning
	Be issued during Execution preparation	Example operational Environmental Incident Action
	Be issued during Execution preparation	Environmental Incident Severity Classification Table
	Be issued during Execution preparation	Environment Incident Regulator Reporting Thresholds
	Be issued during Execution preparation	Environmental Incident Reporting Guidance for strators
	Be issued during Execution preparation	Incident Reporting and Investigation
	Be issued during Execution preparation	Risk Assessment & Method Statement
	Be issued during Execution preparation	Site Induction Records
	Be issued during Execution preparation	Environmental Training Records

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page
Project	Unit No	Doc. Type	Code	Seria	l No	2	8 of 33
202947C	050	PP		800	814	2	
CLIENT REFERENC	CE		•				
Project Code	Area/Facility Code	Originato	Originator Discipline		Do	с Туре	Sequential No

Be issued during Execution preparation	Plant Maintenance and Defect Reports
Be issued during Execution preparation	Waste Carrier Licences, Waste Transfer Notes, Consignment Notes, Environmental Permits,
Be issued during Execution preparation	Environmental Complaints regarding site activities
Be issued during Execution preparation	Environmental Inspections and Audits
Be issued during Execution preparation	Environmental Briefings / Toolbox Talks
Be issued during Execution preparation	Emergency Response Plan
Be issued during Execution preparation	Project Organisation and Emergency Arrangements Chart
Be issued during Execution preparation	Personnel Emergency Evacuation Plan
Be issued during Execution preparation	Monitoring / Sampling Results required for Consent / Permit /Licence compliance

5. FRAMEWORK ENVIRONMENTAL MANAGEMENT PLANS

A framework Construction Environmental Management Plan (CEMP) has been produced at the FEED phase. The "Framework CEMP" is a document containing a series of outline environmental management plans and related documents for the Proposed Development, which is produced by the Project/COMPANY during the design stage of the Proposed Development.

The framework CEMP demonstrates how the commitments in the ES could be implemented. It also sets out the monitoring and auditing activities designed to demonstrate that such mitigation measures are carried out and that they are effective and how mitigation measures to reduce environmental impacts during the construction phase will be delivered and how compliance with environmental legislation will be reached.

The framework CEMP sets out a series of proposed measures that would be applied by the contractor to provide effective planning, management and control during

Information contained in this document is the work product of one or more legal entities of the Technip Energies and embodies confidential and proprietary information of the applicable entity and/or its client. Use of this information is restricted in accordance with conditions specified by the contract. Technip Energies and its affiliates disclaim any and all liabilities for any changes or modifications to this document which are made by any person other than the entity that issued the document under the applicable client contract.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page	
Project	Unit No	Doc. Type	(Code	Seria	l No	•	0(00
202947C	050	PP			300	814	2	9 of 33
CLIENT REFERE	NCE							
Project Code	Area/Facility Coo	le Originato	Originator Discipline		Do	ос Туре	Sequential No	

construction to control potential impacts upon people, businesses and the environment.

The framework CEMP sets out the approach that will be used by CONTRACTOR to update the document to the Final CEMP once the design and construction plans have been finalised at the Detailed Design stage. Procedures and mitigation measures summarised in this iteration of the CEMP (the final CEMP) will be mandatory.

This approach, where CONTRACTOR is responsible for preparing the CEMP, aims to ensure that all potential environmental impacts identified in the ES and at the Detailed Design stage are fully addressed and suitable mitigation measures implemented. Design development is assessed against the requirements assessed in these documents.

The final CEMP will be managed alongside the CONTRACTOR'S generic and sitespecific environmental management plan and systems, meeting ISO14001 requirements. The final CEMP will be a live document and must be maintained and updated throughout the life of the project by CONTRACTOR. Environmental mitigation measures identified must be followed by all parties.

Prior to the commencement of construction, the final CEMP will take account of detailed design and construction planning and the outcome of the planning process. It will be maintained and revised during the construction period to take account of any changes in design or external factors such as regulations and standards, any unforeseen circumstances as they arise, such as new protected species or new archaeological finds, and any failings in environmental performance identified from routine inspections and audits.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page	
Project	Unit No	Doc. Type	Co	ode	Seria	l No	0	10 of 33
202947C	050	PP			300	314	2	
CLIENT REFEREN	CLIENT REFERENCE							
Project Code	Area/Facility Cod	le Originato	or	Discip	line	Do	ос Туре	Sequential No

6. FINAL CONSTRUCTION ENVIRONMENTAL MANAGEMENT PLAN

The final Construction Environmental Management Plan will be written at the detailed design stage and covers the main construction works.

The overall objectives of the final CEMP are to:

- to provide a mechanism for ensuring that measures to mitigate potentially adverse environmental impacts identified in the Environment Statement's (ES) are implemented,
- to ensure that good construction practices are adopted throughout the construction of the works,
- to provide a framework for mitigating impacts that may be unforeseen or that are not identified until construction is underway,
- to provide assurance to third parties that their requirements with respect to environmental performance will be met,
- to provide a mechanism for ensuring compliance with environmental legislation,
- to provide a framework for compliance auditing and inspection, to enable CPY and CTR to be assured that their aims with respect to environmental performance are being met,
- to provide trained and experienced environmental personnel to satisfy the requirements of the CPY Environmental Statement.

This Final CEMP takes due consideration of the assessments undertaken and reported within the published ES presented as part of planning application The final CEMP identifies mitigation and environmental issues associated with the following phases of construction:

- Prior to construction (e.g. advanced works, site preparation, vegetation clearance);
- During construction (e.g. works);
- Post construction, or pre-occupation, including demobilisation.

This final CEMP will be produced to ensure that all necessary measures identified during planning are incorporated into the project during the phases listed above. This

Information contained in this document is the work product of one or more legal entities of the Technip Energies and embodies confidential and proprietary information of the applicable entity and/or its client. Use of this information is restricted in accordance with conditions specified by the contract. Technip Energies and its affiliates disclaim any and all liabilities for any changes or modifications to this document which are made by any person other than the entity that issued the document under the applicable client contract.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Page
Project	Unit No	Doc. Type	Code	Serial No		11 of 33
202947C	050	PP		00814		
CLIENT REFEREI	VCE					
Project Code	Area/Facility Coo	le Originato	or Disc	pline	Doc Туре	Sequential No

final CEMP should also be read alongside the following key documents which are contained in the Appendices of this document (once developed these documents will be included in the final CEMP at execution Phase).

7. POLICY AND PLANNING

7.1 Environmental Policy Statement

The project has an Environmental Policy that meets the requirements of ISO 14001:2015. The policy statement will be displayed on the site notice boards, publicised to all site staff and operatives, and made available to interested parties upon request.

A copy of the CONTRACTOR Environmental policy is included in Appendix A.

7.2 Sustainability Policy Statement

The project has a ESG Road Map that supports its Sustainability objectives. The policy statement will be displayed on the site notice boards, publicised to all site staff and operatives, and made available to interested parties upon request.

A copy of the 2022/2023 CONTRACTOR ESG Roadmap is included in Appendix B

A copy of the Project Sustainability Policy is included in Appendix C (Hold).

7.3 CEMP Implementation

CONTRACTOR, along with all subcontractors and suppliers will comply with the requirements of the CEMP.

The CEMP is based on the 'Plan, Do, Check, Act' model and has been developed to incorporate and take account of the environmental requirements of International Standard ISO14001:2015 and the CONTRACTOR'S Management System.

LANZATECH

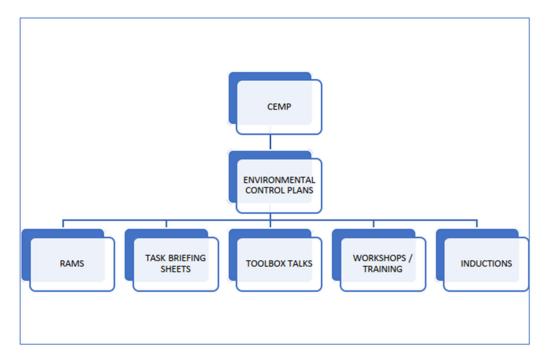
LanzaTech

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page	
Project	Unit No	Doc. Type	Coo	le	Seria	l No	2	12 of 33
202947C	050	PP			300	314	2	
CLIENT REFEREN	CLIENT REFERENCE							
Project Code	Area/Facility Cod	e Originato	or	Discip	oline	Do	ос Туре	Sequential No

The CEMP provides a framework to manage all contract environmental requirements and applicable legislation. The CEMP is supported by Environmental Control Plans that define the arrangement to manage the project's environmental risks and support on site environmental performance. Task specific requirements are detailed within Risk Assessment and Method Statements (RAMS). Awareness of environmental controls will be communicated to those working for, or on behalf of the project via site induction, workshops/training, pre start briefings and tool box talks. This arrangement is shown below.


LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page	
Project	Unit No	Doc. Type	Co	ode	Seria	l No	2	13 of 33
202947C	050	PP			300	314	2	
CLIENT REFERENC	CLIENT REFERENCE							
Project Code	Area/Facility Cod	e Originato	or	Discip	oline	Do	ос Туре	Sequential No

All contractors providing a product or service will be required to provide evidence to show how they will control their environmental risks if their activities are deemed to potentially create an environmental impact. This will be reviewed against this Final CEMP, relevant specification, Scope of Works (SOW) and legislative requirements, etc. by the project environmental team at the supplier approval stage.

Inspections and audits of site activities, management, training and documentation will be conducted in order to monitor compliance with the CEMP. All documentation will be saved in CONTRACTOR'S EDMS (GAIA). All supplier requirements are defined on the SDRL (Supplier document requirements list).

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page	
Project	Unit No	Doc. Type		Code	Seria	l No	2	14 of 33
202947C	050	PP			008	314	2	
CLIENT REFEREN	CLIENT REFERENCE							
Project Code	Area/Facility Coo	le Originat	or	Discip	oline	Do	ос Туре	Sequential No

8. ENVIRONMENTAL MANAGEMENT RESPONSABILITIES

Everyone working for, or on behalf of, the project has a responsibility for environmental performance. Site inductions will be delivered to the entire workforce, regardless of role, to raise awareness of measures/procedures/practices implemented through this plan.

COMPANY and delegated consultants acting on their behalf, CONTRACTOR and their subcontractors are all responsible for complying with the project's environmental policies, relevant environmental legislation and regulations. It is a requirement that all persons on site will be made aware of their duty of care to the environment and will be provided with sufficient training, supervision, or instruction through Site Inductions, Toolbox Talks and specific method statements as necessary.

Responsibilities for the site environmental management will be delegated to key personnel by CONTRACTOR who will manage all reporting and monitoring of environmental mitigation during the project. Where required, environmental specialists will be consulted to provide advice on specific issues or site activities, in consultation with CONTRACTOR.

The main environmental roles and responsibilities are shown in the table below.

Further details of responsibilities will be documented in individual job descriptions/appointment letters and for subcontractors, in their contract documentation.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page
Project	Unit No	Doc. Type	Code	Seria	l No		15 of 33
202947C	050	PP		000	314	2	
CLIENT REFEREN	ICE						
Project Code	Area/Facility Cod	e Originate	or Dis	cipline	Do	ос Туре	Sequential No

Role	Main responsibilities
CONTRACTOR Project Director	 Leadership and commitment to communicate and support the delivery of the works in line with the project's environmental and sustainability visions. Providing leadership and commitment with respect to the environmental management system. The environmental performance of the project and for encouraging others to improve the effectiveness of the EMS and performance. Promoting sustainable design and construction objectives. Setting the project's behavioural culture for sustainability, ensuring that all aspects of the final CEMP and Sustainability Action Plan are embraced by the delivery team, including the supply chain partners. Responsible for assigning appropriate roles and responsibilities within the Project Management Team that they adequately reflect the significant environmental risk and opportunities that have been identified to ensure that legal compliance obligations can be met and delivered. Providing direction to other supporting roles in the project to ensure overall targets are met. Ensuring that critical objectives, aspects, performance metrics and results are continually communicated effectively to all stakeholders. Ensuring continual improvement can be achieved.
CONTRACTOR HSES Manager	 Providing leadership and commitment with respect to the environmental management system (EMS). Overall responsibility for management of environmental matters Allocation of sufficient resources within the Health, Safety, Environment & Sustainability (HSES) Project Team. Resolution of findings from audits and inspections Chair monthly site HSES meeting. Supporting Environment & Sustainability Manager (E&SM) in meeting project E&S objectives.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page
Project	Unit No	Doc. Type	Code	Serial	No	0	16 of 33
202947C	050	PP		008 [,]	14	2	
CLIENT REFEREI	VCE						
Project Code	Area/Facility Coo	le Originato	or Disc	ipline	Do	с Туре	Sequential No

CONTRACTOR Oversee the environmental components of the project.	
Environmental and Act as main contact for all environmental issues on site.	
Sustainability Manager Co-ordination of all environmental specialists to ensure compl	ance
with the environmental requirements of the project	
Co. ordinating site environmental management compliance	
CO-ordinating site environmental management compliance.	
	naanta
compliance with environmental legislation, best practice, or	insents,
• • • • • • • • • • • • • • • • • • • •	
Updating and reviewing the CEMP throughout the works.	
Ensuring the project team have sufficient environmental training	
co-ordinate delivery of additional training/inductions/Toolbo	x laiks
where required.	
Liaison with regulatory bodies.	
Reporting environmental near misses, incidents or supply cha	n
partner innovations.	- 4
Carry out an environmental review of suppliers and sub-contra	
To assess environment management system arrangements	sand
key policies.	_
Assessing and checking survey results and updating database	
Environmental Control Plans (ECPs) etc. with any new info	
To co-ordinate with the design and construction teams to ensu	
works are planned and delivered in accordance with legal a	and
contractual requirements.	
To undertake assurance activities such as periodic audits and	weekiy
inspections of work sites.	
To review documentation (incl. RAMS) for work activities.	danaaa
To facilitate the investigation of complaints, incidents or excee	
To provide support and direction to Stakeholder Manager to er compliance with the commitments register is achieved.	ISUIE
To review monitoring data as provided by Specialists.	
To monitor and report environmental performance of the suppl	v chain
To lead a positive environmental culture on the project to trans	
behaviours where required.	
To prepare environmental requirements for supply chain contra	acte
To undertake and co-ordinate specific environmental training t	othe
construction team and workforce as required.	
To attend site meetings.	
To advise on environmental best practice.	

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page	
Project	Unit No	Doc. Type	Code	Serial	No	2	17 of 33	
202947C	050	PP		008	14	2		
CLIENT REFEREI	CLIENT REFERENCE							
Project Code	Area/Facility Coo	le Originat	or Disc	cipline	Do	ос Туре	Sequential No	

Role	Main responsibilities
CONTRACTOR Site HSE Advisor	 Providing support to the Environmental Manager. Provide site induction on environmental practices, toolbox talks, organise specialist surveys, and oversee monitoring and testing of materials as required. Monitor CONTRACTOR site environmental compliance, supervising works and construction activities on site, auditing/reviewing works and procedures including method statements as required. Ensure hours of working meet accepted noise and vibration limits set in consultation with Environmental Health Officer (EHO). Develop with Principal Contractor Site Health & Safety Officer, an Emergency Spillage Response Plan and associated protocols for incidents. Ensure Environment Agency and other stakeholder requirements are implemented for consents and permits. Recording and reporting the progress of environmental works. Report any product or service environment non-conformances.
CONTRACTOR Environmental Engineer (Ecologist, Landscape Architect, Archaeologist, Noise/Air Quality Specialist, Material/Waste Management Specialist, Contaminated Land Specialist, Occupational Health Specialist, etc.)	 Individual Environmental Specialists will be responsible for the inputs into the environmental assessment and final detailed designs. Will provide support to the construction project team in the form of preconstruction surveys, applications for licenses/consents, watching briefs and other specific issues such as protected species and landscape planting supervision. Oversee mitigation throughout the project. Provide specialist advice and instruction to the supply chain.
CONTRACTOR Community Liaison Officer (CLO)	 Key liaison with all the above and COMPANY'S Communications Lead, Stakeholder Lead and Customer lead. Single contact point on site for the community and general public. Maintain and develop Community Relations Strategy. Maintain comment and enquiries log and disseminate identified comment for response and implementation of action.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						ev.	Page
Project	Unit No	Doc. Type	Code	Serial No		0	18 of 33
202947C	050	PP		00814		2	
CLIENT REFERE	NCE						
Project Code	Area/Facility Coo	de Originato	or Disc	ipline	Doc Type		Sequential No

Role	Main responsibilities					
Delivery Team (including Procurement Team)	 To attend the project induction prior to commencing work. To provide their own environmental management plan and risk assessments in RAMS as required. To promote a right first time approach. To ensure environmental sustainability reporting data is submitted accurately and on time. To ensure environmental measures are implemented in line with the method statements and risk assessments. To work considerately with a good working ethic to minimise adverse environmental impacts and follow all site rules communicated during the briefings and project training sessions. To adhere to instructions provided by an Ecological Clerk of Works, Archaeologist, etc. To report near misses, positive interventions and all incidents no matter how minor. To comply with any environmental consents required to complete the planned works. 					

Contact information for personnel with environmental responsibilities is as follows (Hold):

Name	Position	Organisation	Contact Details		
	Project Director	COMPANY	Email: Phone Number:		
	Project Director	CONTRACTOR	Email: Phone Number:		
	Site Manager	CONTRACTOR	Email: Phone Number:		
	HSES Manager	CONTRACTOR	Email: Phone Number:		
	Construction Manager	CONTRACTOR	Email: Phone Number:		
	Community Liaison Officer	CONTRACTOR	Email: Phone Number:		

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE							Page			
Project	Unit No	Doc. Type	Code	Serial	No	2	40.000			
202947C	050	PP		008	00814		19 of 33			
CLIENT REFERENCE										
Project Code	Area/Facility Cod	le Originato	Originator Discipline		line Doc Type		Sequential No			

9. DETAILED CONTRACTOR RESPONSIBILITIES PRIOR TO CONSTRUCTION

CONTRACTOR is responsible for approving the appointment of the Environment and Sustainability Manager/Director and any environmental specialists prior to any work starting on site.

CONTRACTOR is responsible for the following prior to construction commencement;

- Developing final CEMP (using this framework CEMP as a basis).
- Defining roles and responsibilities for their own and their key sub-contractors' personnel relating to environmental issues (see Section 8);
- Developing an environmental training plan covering all personnel;
- Developing a programme of internal and sub-contractor inspections/monitoring;
- Developing project-specific emergency procedures for environmental incidents;
- Finalising and implementing a programme for works to allow all preconstruction surveys to be arranged and completed within the required timeframe;
- Agreeing a non-compliance reporting procedure with The COMPANY to manage any environmental incidents or non-compliance events for the project; and
- Developing the required Environmental Control Plans (ECPs), see Section 7 for list. These will be updated as required up to construction commencement to reflect any new, relevant information provided by COMPANY or other statutory consultees (e.g. further consent conditions, landowner agreements) or through design development, construction planning, preconstruction surveys etc.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE						Rev.	Page
Project	Unit No	Doc. Type	Code		Serial	No	0	00.100
202947C	050	PP			008	14	2	20 of 33
CLIENT REFEREN	NCE							
Project Code	Area/Facility Coo	le Originate	or	Discip	line	Do	с Туре	Sequential No

10. DETAILED CONTRACTOR RESPONSIBILITIES DURING CONSTRUCTION

CONTRACTOR is responsible on site for delivering the construction phase commitments in the ES and Register of Environmental Actions and Commitments (REAC), as described within the project design construction models, drawings and specifications, and controlled by this Framework CEMP.

CONTRACTOR will implement the procedures set out in this Framework CEMP with technical advice from competent environmental specialists.

CONTRACTOR is responsible for all their subcontractors on site and for ensuring these sub-contractors comply with the requirements of this Framework CEMP.

CONTRACTOR is responsible for ensuring that there are no breaches in legislation and that good practice is followed throughout the duration of the construction.

CONTRACTOR must ensure that all on-site works are adequately monitored.

Environmental Objectives & Targets will be developed in conjunction with CPY and will be reviewed on a monthly basis at the project progress meetings. A copy of the Project's Objectives and Targets, and associated progress reports, will be held in the Project Environmental Files and included in project monthly reports.

Risk Assessments & Method Statements (RAMS) and Environmental Control Plans (ECPs) and other associated documents (such as Section 61 of Control of Pollution Act 1974, Discharge consent by NRW, etc.) will be used to ensure all environmental commitments are delivered on site. The implementation of the requirements of the RAMS, ECPs and delivery of mitigation measures relating to the project will be the responsibility of CONTRACTOR.

Any improvements or deviations relating to environmental matters required to the RAMS and/or ECPs shall be approved by the Environment and Sustainability Manager (and may be subject to other consents where required). CONTRACTOR will provide regular feedback and information to COMPANY Project Manager and Environmental

Information contained in this document is the work product of one or more legal entities of the Technip Energies and embodies confidential and proprietary information of the applicable entity and/or its client. Use of this information is restricted in accordance with conditions specified by the contract. Technip Energies and its affiliates disclaim any and all liabilities for any changes or modifications to this document which are made by any person other than the entity that issued the document under the applicable client contract.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE						Rev.	Page
Project	Unit No	Doc. Type	Code		Serial N	No	n	04.00
202947C	050	PP			0081	14	2	21 of 33
CLIENT REFEREI	VCE							
Project Code	Area/Facility Cod	e Originato	or	Disciplin	ne	Do	с Туре	Sequential No

Manager on the progress and success in delivering all mitigation and commitments on site.

The REAC will be updated to demonstrate progress and will be kept by the project for environmental auditing purposes, with updates periodically sent to COMPANY.

All site personnel have the responsibility and authority to halt works in any activity where environmental commitments are not being successfully delivered or where legal requirements are being breached.

All site personnel will be encouraged to draw attention to any environmental risk or potential environmental risk arising on site (for example, refuelling being carried out too close to a watercourse or working outside the agreed limits of deviation for any aspect of the works). This approach will be promoted in all site inductions and training.

11. CONSTRUCTION PLANNING

The current expectation is that the construction works will be split into phases with the following table providing an indicative construction programme.

Construction working hours will generally be:

- Monday to Friday 07:00 to 19:00 and
- Saturday 07:00 to 13:00,

however, it is likely that some construction activities will be required to be 24 hours at certain times. This is principally construction activities that cannot be stopped, such as concrete pouring. Where on-site works are to be conducted outside the core hours, they will comply with the restrictions stated in this Final CEMP and any other restrictions agreed with the planning authorities.

Activities that could generate a construction noise or light nuisance impact will be assessed for their potential impact prior to being undertaken at night, including but not limited to sheet piling, piling, use of impact wrenches, concrete scabbling, use of reversing sirens, and concrete jack hammering. Construction noise limits will need to be in compliance with the construction noise scheme agreed with relevant planning authority.

LANZATECH

LanzaTech

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	ENCE						Rev.	Page
Project	Unit No	Doc. Type	Co	de	Seria	l No	2	00.000
202947C	050	PP			300	314	2	22 of 33
CLIENT REFERENC	CE							
Project Code	Area/Facility Code	Originato	or	Discip	line	Do	ос Туре	Sequential No

Indicative Construction Planning

The table below to be completed as part of Final CEMP during the detailed engineering phase.

	M-5	M-4	M-3	M-2	M-1	M1	M2	M3	M4	M5	M6	M7	M8	6W	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24
Enabling Works																													
Site Establishment																													
Construction																													
Utilities																													
Commissioning																													

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	RENCE					Rev.	Page
Project	Unit No	Doc. Type	Code	Seria	al No		00.1.00
202947C	050	PP		00	814	2	23 of 33
CLIENT REFEREN	CE						·
Project Code	Area/Facility Cod	e Originato	or E	iscipline	Do	ос Туре	Sequential No

12. CONSTRUCTION LAYDOWN AND WELFARE FACILITIES

Proposed construction laydown areas, including storage, site offices, welfare facilities and car parking, will be located at various places within the site boundary.

13. TRAFFIC MANAGEMENT AND OFF SITE DELIVERY ROUTES

During construction, CONTRACTOR will ensure that the impacts from construction traffic on the local community (including local residents and businesses and users of the surrounding transport network) are minimised, where reasonably practicable. This will be ensured by implementing the measures set out in the Framework Construction Workers' Travel Plan (CWTP) and the Framework Construction Traffic Management Plan (CTMP) respectively; These plans will be developed from the Framework status to be included with this CEMP prior to the start of construction.

The Framework CTMP provides details of the designated routes for Heavy Vehicle movements and this will be set out in accordance with the Transport Assessment and Environmental Statement produced by others.

The use of port facilities are not considered to be part of the project logistic.

Final details of the designated routes for HGV movements and worker car movements will be detailed in the CWTP and CTMP prior site mobilization.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	RENCE					Rev.	Page
Project	Unit No	Doc. Type	Code	Serial	No	2	04 600
202947C	050	PP		008	14	2	24 of 33
CLIENT REFEREN	ICE						
Project Code	Area/Facility Cod	e Originato	or Disc	ipline	Do	ос Туре	Sequential No

14. SPOIL MANAGEMENT

Spoil will arise from the construction activities of the project. The CONTRACTOR will take all reasonable measures to apply the waste hierarchy which is, in priority order, as follows:

During enabling works and construction, spoil arising will be temporarily stockpiled within the Site boundary before either beneficial re-use on site for use in development platform construction or being taken off-site by HGV for treatment and/or disposal at a local permitted facility (in the local area) or for reuse in other development sites in the area.

Spoil will be stockpiled in areas at low risk of flooding within the Site boundary on the site. The size of the stockpile(s) will be minimised where possible by excavation works being constructed in parallel with development platform construction which will utilise spoil arisings where these are geotechnically or chemically suitable.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE					Rev.	Page	
Project	Unit No	Doc. Type	Code	Seria	al No		05.00	
202947C	050	PP		00	814	2	25 of 33	
CLIENT REFERE	NCE						·	
Project Code	Area/Facility Coo	le Originato	or D	iscipline	D	ос Туре	Sequential No	

In addition, there will be progressive off-site removal of geotechnically unsuitable or contaminated materials for re-use, treatment and/or disposal. Stockpile heights will therefore be low and there is sufficient area within the Site boundary to accommodate the volume of spoil expected to be generated.

Suitable measures will be put in place to prevent sediment being washed into watercourses, and the stockpiles will be visually monitored for wash away during and after periods of prolonged rainfall.

The nearest facility for excavated material surplus area is Briton Ferry Recycling Center at Port Talbot.

Spoil will be sampled and any contaminated spoil identified will be managed in accordance with the Site Waste Management Plan (SWMP), Material Management Plan (MMP), Site Preparation Plan and the Site Remediation Plan which will be prepared and appended to this Framework CEMP in the Execute phase.

A Framework Site Waste Management Plan (SWMP) has been developed as part of the Framework CEMP which allows for waste streams to be estimated and monitored and goals set with regards to the waste produced. The MMP will specify that any potentially contaminated soils will be managed in accordance with:

Defra Construction Code of Practice for the Sustainable Use of Soil on Development Sites

(Defra, 2009); and

Definition of Waste: Development Industry Code of Practice (CL:AIRE, 2011).

Any suspected contaminated spoil will be placed on an impermeable membrane to prevent the leaching of any contaminants into the subsurface or watercourses. Site specific Screening Verification Criteria for the classification of soils for re-use or disposal will be derived by the Applicants in accordance with the MMP.

All spoil will be processed and managed in accordance with The Waste (England and Wales) Regulations 2011 (as amended).

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE						Rev.	Page	
Project	Unit No	Doc. Type	Cod	de	Serial	No	2	00 -6 00	
202947C	050	PP			2	26 of 33			
CLIENT REFEREN	VCE								
Project Code	Area/Facility Coo	le Originate	or	Discipl	ine	Do	с Туре	Sequential No	

Recycling and Disposing of Waste

In order to control the waste generated on Site during site preparation and construction, CONTRACTOR will separate the main waste streams on Site, prior to them being taken to a waste facility for recycling or disposal. As outlined above spoil will be beneficially used onsite where possible to minimise the amount of spoil that requires treatment or disposing of offsite.

The Site Waste Management Plan (SWMP) appended to this Framework CEMP specifies the waste streams to be estimated and monitored and goals set with regards to the waste produced. Under the DCO requirements, the SWMP must be submitted to and approved by the relevant planning authority before construction works commence.

The SWMP requires the CONTRACTOR segregates waste streams on-site, prior to them being taken to a licensed waste facility for recycling or disposal. All waste to be removed from the Site will be undertaken by fully licensed waste carriers and taken to licensed waste facilities.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE					Rev.	Page	
Project	Unit No	Doc. Type	Code	Seri	al No	2	07.00	
202947C	050	PP		00	814	2	27 of 33	
CLIENT REFEREN	VCE						·	
Project Code	Area/Facility Coo	e Originato	or	Discipline	Do	ос Туре	Sequential No	

15. ENVIRONMENTAL CONTROL PLANS

A project dedicated control plan will be developed for construction phase. This will take account of construction specific measures in the Environmental Management Plan (EMP) in accordance with the ES by others:

- Built Heritage and Archaeology
- Ground Conditions and Contamination
- Flood Risk and Hydrology
- Transport
- Lighting
- Terrestrial ecology
- Marine ecology
- Landscape and visual
- Socio-economics and human health
- Climate change
- Air quality
- Noise and vibration

Plan will detail the likely sources of emissions that may have an impact on these above Environmental Aspects and the steps that the construction team will put in place to manage and mitigate these.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE						Rev.	Page	
Project	Unit No	Doc. Type		Code	Seria	l No	2	00 (00	
202947C	050	PP		2	28 of 33				
CLIENT REFERE	NCE								
Project Code	Area/Facility Coo	le Originato	or	Discip	oline	Do	ос Туре	Sequential No	

APPENDIX A: CONTRACTOR HSES POLICY

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	ENCE						Rev.	Page
Project	Unit No	Doc. Type		Code	Seria	l No	•	00 (00
202947C	050	PP			008	314	2	29 of 33
CLIENT REFERENC	CE						•	·
Project Code	Area/Facility Code	Originato	r	Discip	line	Do	ос Туре	Sequential No

Global HSE and Security Policy POL-COR-011-HSE-Rev.2 - Feb 2021

This policy defines Technip Energies absolute commitment to the Health, Safety, Environment and Security (HSES) of all those who can either directly or indirectly be affected by our business activities.

HSES is a key element of our foundational beliefs (combined under the Safety belief) and managed as an integral part of our business, therefore we must never compromise on health, safety, environment or security to achieve our objectives.

We are committed to fostering an incident-free environment worldwide, through:

- Our fundamental conviction that all incidents are preventable
- Setting health, safety, environmental and security objectives specific to Technip Energies for the scope of our activities and extending them in a life cycle perspective to achieve continual improvement of the HSES management system and to continually enhance our HSES performance
- · Fostering a leadership culture driven by engagement and accountability to ensure physical and mental health, safety, environment and security and a culture where we look after each other
- Committing and allocating adequate resources and expertise to continually and proactively eliminate hazards, reduce risks and prevent injury, ill health and environmental impact related to our activities, through engineering, process improvements, technologies and on-site execution
- Operating in a manner that protects the environment by providing sustainable solutions to minimize our carbon and environmental footprint while improving our energy and resource efficiency
- Securing our people, assets, technology, sensitive information and reputation
- Fulfilling, and when we deem necessary, exceeding legal, compliance and other obligations to meet our foundational beliefs
- Implementing and encouraging consultation and participation of workers.

Our success and continual improvement will be measured through the reduction of incidents, risks, and environmental footprint with clear and meaningful performance indicators.

HSES is everyone's responsibility. Every person is encouraged and expected to stop any work if they consider conditions are unsafe, in any way.

To comply with this policy is mandatory and the responsibility of all employees and all of those engaged and working to execute our activities. Visible commitment of management is the enabler of this compliance.

400

Arnaud Pieton Chief Executive Officer February 2021

Information contai

onfidential and

proprietary information of the applicable entity and/or its client. Use of this information is restricted in accordance with conditions specified by the contract. Technip Energies and its affiliates disclaim any and all liabilities for any changes or modifications to this document which are made by any person other than the entity that issued the document under the applicable client contract.

LANZATECH

LanzaTech

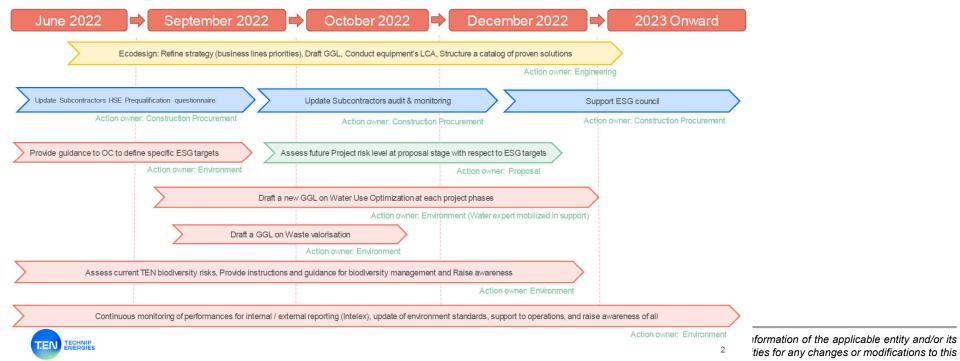
PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFEI	RENCE					Rev.	Page
Project	Unit No	Doc. Type	Code	Seria	l No	2	00.100
202947C	050	PP		300	314	2	30 of 33
CLIENT REFEREN	ICE		•				
Project Code	Area/Facility Cod	e Originato	or Dis	scipline	Do	ос Туре	Sequential No

APPENDIX B: ESG ROADMAP 2022-2023

LANZATECH


LanzaTech

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	ENGINEER REFERENCE						
Project	Unit No	Doc. Type	Code	Serial N	lo	2	31 of 33
202947C	050	PP		0081	4	2	
CLIENT REFEREN	CE						
Project Code	Area/Facility Code	e Originato	ator Discipline [Doc Ty	ре	Sequential No

Environmental Action Plan 2022 - 2023

чосителя which are made by any person other than the entity that issued the document under the applicable cheric contract.

LANZATECH

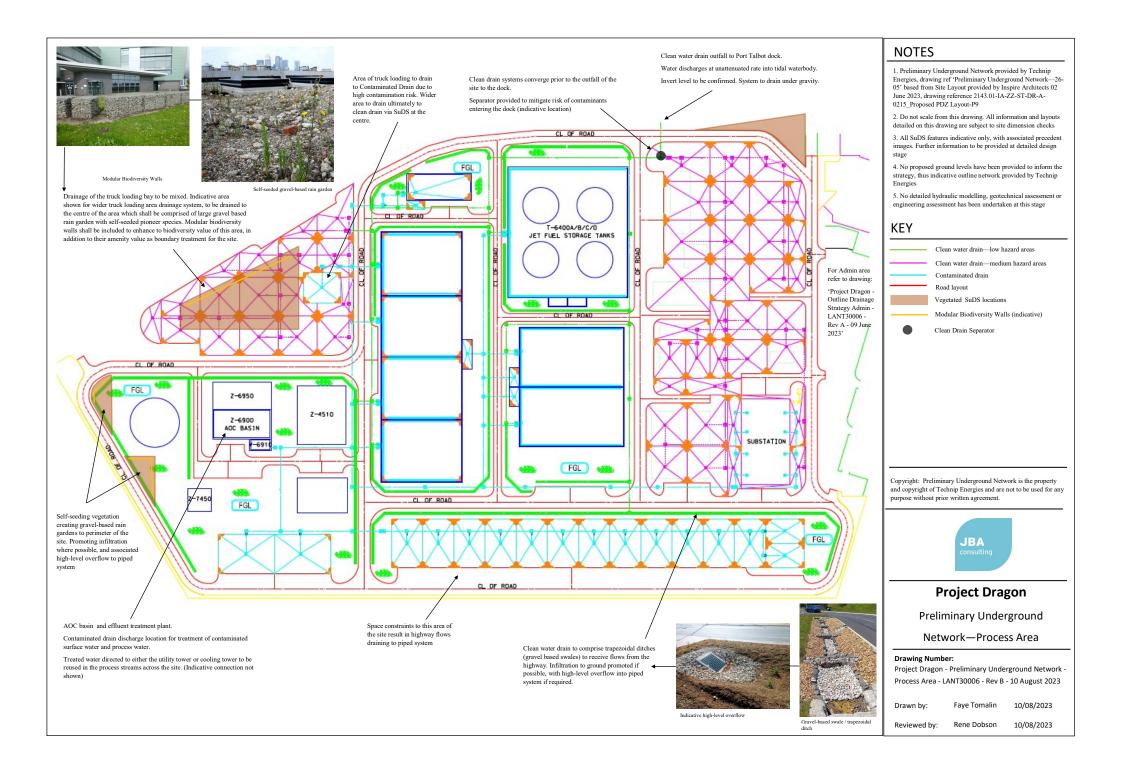
PORT TALBOT, WALES

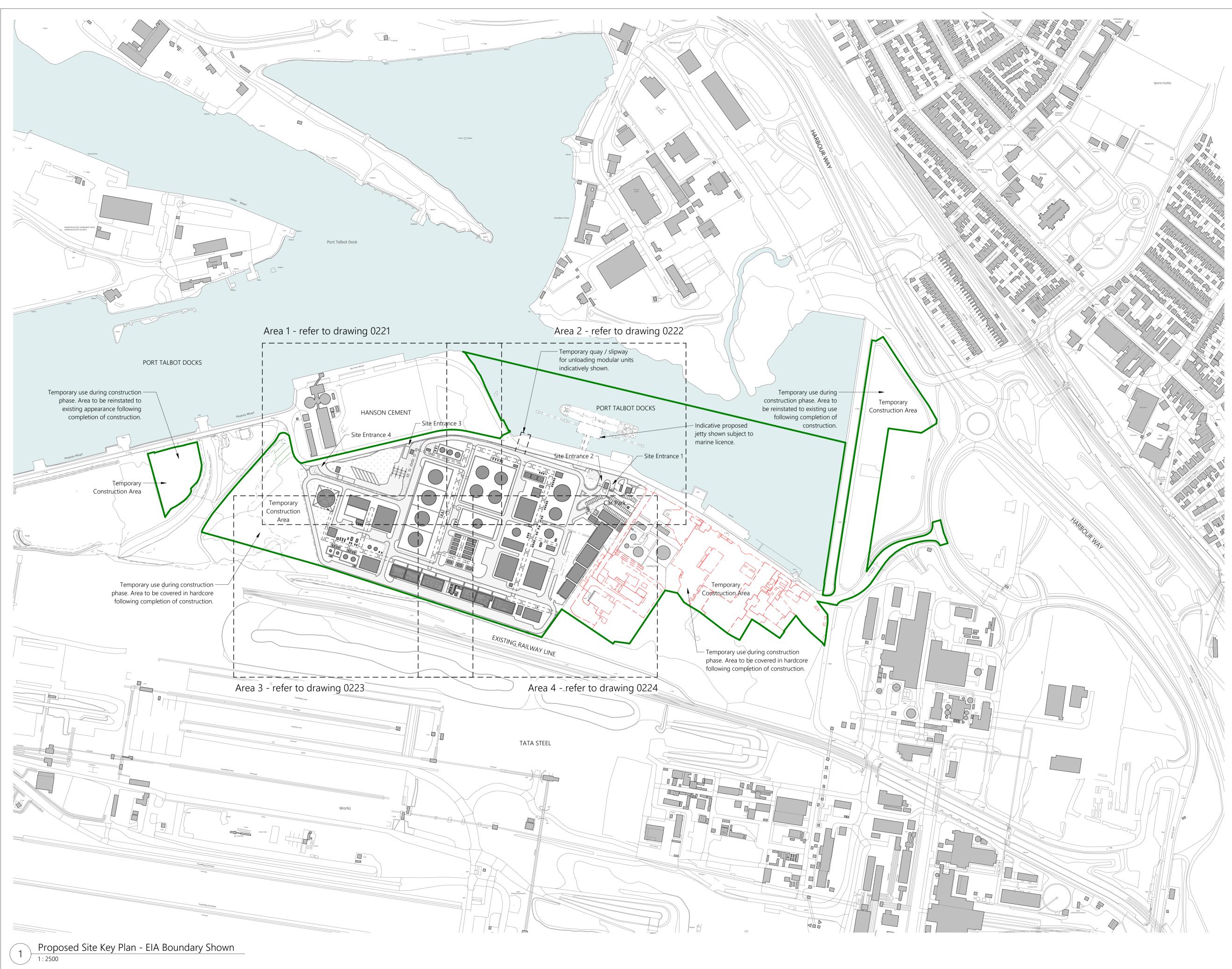
FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	ENGINEER REFERENCE									
Project	Unit No	Doc. Type	Code	Serial	No	2	32 of 33			
202947C	050	PP		008 [,]	14	2				
CLIENT REFEREN	CLIENT REFERENCE									
Project Code	Area/Facility Cod	e Originato	or Disc	cipline	Do	с Туре	Sequential No			

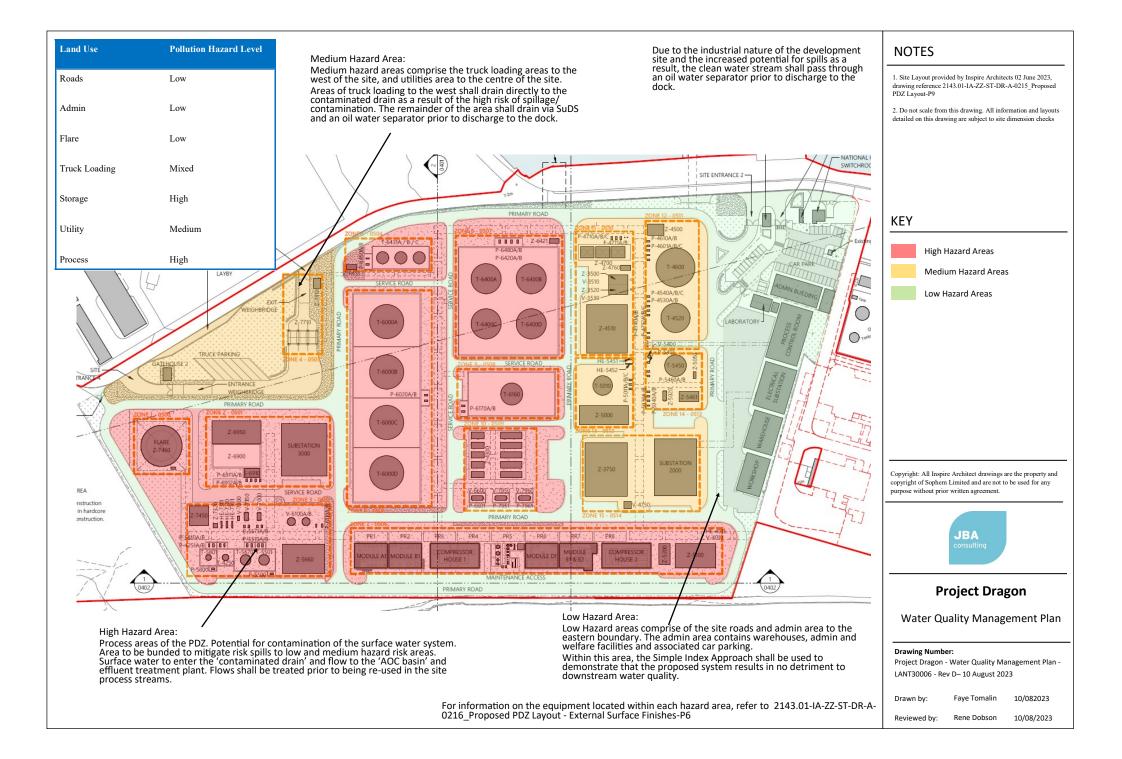
APPENDIX C: PROJECT SUSTAINABILITY POLICY [HOLD]

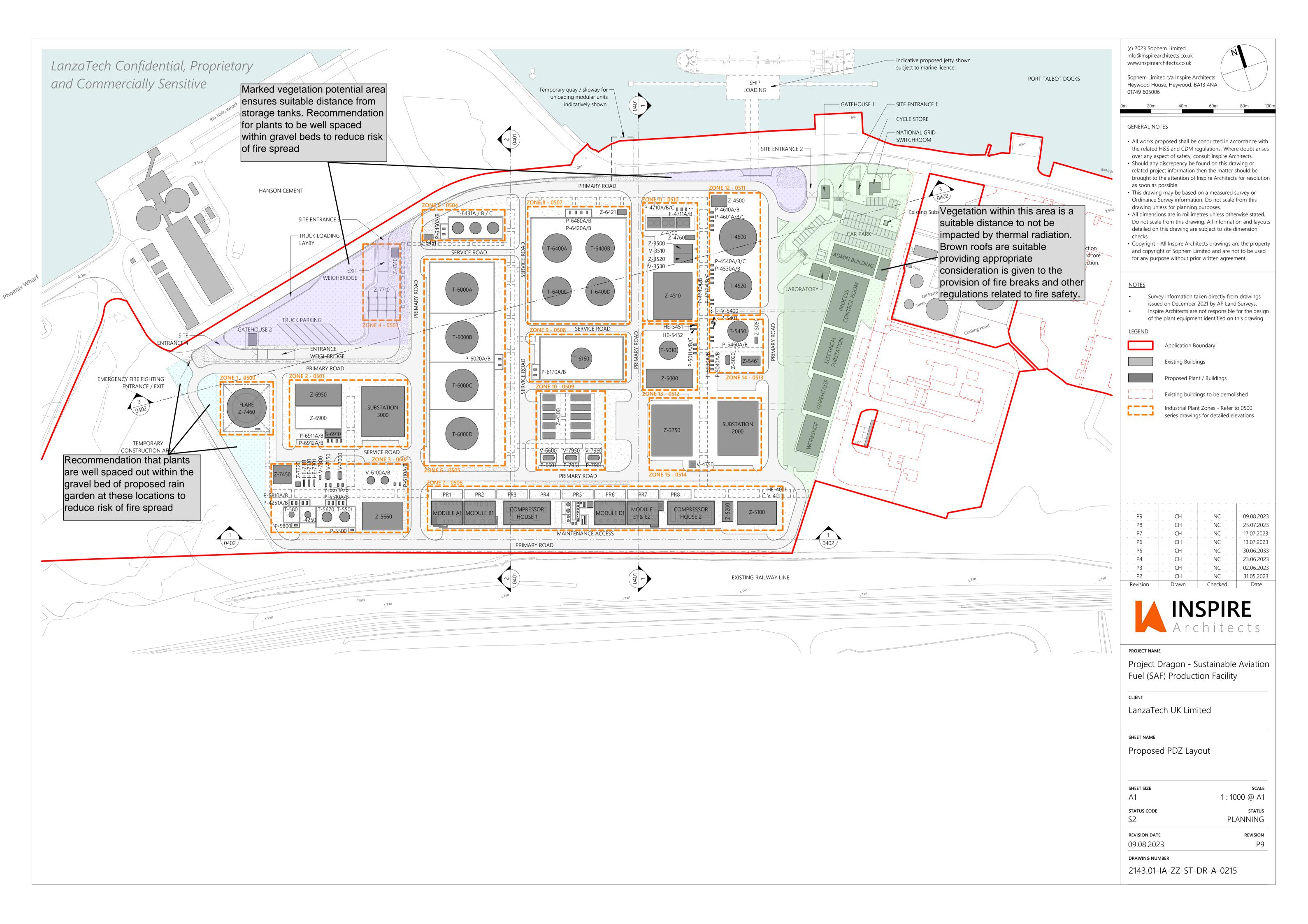
LANZATECH




PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN


ENGINEER REFERENCE							Rev.	Page
Project	Unit No	Doc. Type		Code	Seria	l No	•	33 of 33
202947C	050	PP			008	314	2	
CLIENT REFERENC	CE							
Project Code	Area/Facility Code	e Originato	or	Discip	oline	Do	ос Туре	Sequential No


End of document

info@inspirearchit www.inspirearchit			N
Sophem Limited t Heywood House, 01749 605006	•	\ \	
n 50m	100m	150m	200m 25
 GENERAL NOTES All works propo the related H&S over any aspect Should any disc related project i brought to the a as soon as poss This drawing ma Ordinance Surve drawing unless All dimensions a Do not scale fro detailed on this checks. Copyright - All I and copyright o for any purpose 	and CDM reg of safety, con repency be fo nformation th attention of In ible. ay be based of ey information for planning p are in millimet om this drawin drawing are s Inspire Archite of Sophem Lim	ulations. Whe sult Inspire A und on this d en the matter spire Architec n a measured a. Do not scale urposes. res unless oth g. All informa ubject to site cts drawings ited and are u	ere doubt arises rchitects. rawing or should be ts for resolutio survey or from this nerwise stated. tion and layout dimension are the propert not to be used
issued or Inspire A of the pla LEGEND EIA Stu Existin Propos	ant equipment	021 by AP Lar ot responsibl dentified or	nd Surveys. e for the design n this drawing. x 24.45 hectare
Lanzal Pro Comm P8 P7 P6 P5 P4 P3 P2 P1 Revision	oprieta	ary ar	nd
PROJECT NAME Project Dra Fuel (SAF)	Arc agon - Su Productio	on Facilit	e C t S e Aviatior
LanzaTech Sheet Name Proposed S Boundary S	Site Key F	Plan - ElA	Ч scale 500 @ А1
A1 STATUS CODE			STATUS
A1		P	status LANNING

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	ENGINEER REFERENCE							Page		
Project	Unit No	Doc. Type		Code	Seria	il No	2	1 of 33		
202947C	050	PP			008	314	2			
CLIENT REFEREN	CLIENT REFERENCE									
Project Code	Area/Facility Cod	e Originato	Originator Discipline Do		ос Туре	Sequential No				

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

Pages modified under this revision:

2	03/08/2023	IFFC Issued For Feed (Consolidated)	A. Elsalakawy	B. Lynskey	M. Allan
1	06/06/2023	IFFC Issued For Feed (Consolidated)	C.Laquel	D. Paris	M. Allan
0	12/04/2023	IFRC Issued For Review (Consolidated)	S. DJEROUROU	N. DJERAMBETE	C. LAQUEL
Rev	Date DD/MM/YY	STATUS	WRITTEN BY (name & sign)	CHECKED BY (name & sign)	APPROVED BY (name & sign)
		DOCUMENT	REVISIONS		

Sections changed in last revision are identified by a vertical line in the margin

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	Rev.	Page							
Project	Unit No	Doc. Type	Code	Serial	No	•	2 of 33		
202947C	050	PP		008	14	2			
CLIENT REFEREN	CLIENT REFERENCE								
Project Code	Area/Facility Cod	e Originato	iginator Discipline D		Do	ос Туре	Sequential No		

CONTENTS

1.	INTRO	DDUCTION	4
2.	SCOF	PE OF DOCUMENT	4
3.	DEFI	NITIONS AND ABBREVIATIONS	4
	3.1	Definitions	4
	3.2	Abbreviations	5
4.	REFE	RENCE DOCUMENTS	6
	4.1	CONTRACTOR Specific Reference Documents (Hold):	7
5.	FRAM	IEWORK ENVIRONMENTAL MANAGEMENT PLANS	8
6.	FINAL	CONSTRUCTION ENVIRONMENTAL MANAGEMENT PLAN	10
7.	POLIC	CY AND PLANNING	11
	7.1	Environmental Policy Statement	11
	7.2	Sustainability Policy Statement	11
	7.3	CEMP Implementation	11
8.	ENVI	RONMENTAL MANAGEMENT RESPONSABILITIES	14
9.	DETA	ILED CONTRACTOR RESPONSIBILITIES PRIOR TO CONSTRUCTION	19
10.	DETA	ILED CONTRACTOR RESPONSIBILITIES DURING CONSTRUCTION	20
11.	CONS	STRUCTION PLANNING	21
12.	CONS	STRUCTION LAYDOWN AND WELFARE FACILITIES	23
13.	TRAF	FIC MANAGEMENT AND OFF SITE DELIVERY ROUTES	23
14.	SPOII	_ MANAGEMENT	24
15.	ENVI	RONMENTAL CONTROL PLANS	27
APPE	NDIX A	: CONTRACTOR HSES POLICY	28
APPE	NDIX B	: ESG ROADMAP 2022-2023	30
APPE		: PROJECT SUSTAINABILITY POLICY [HOLD]	32

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	NGINEER REFERENCE							
Project	Unit No	Doc. Type	Code	Seria	l No		3 of 33	
202947C	050	PP		300	314	2		
CLIENT REFERENCE	CE							
Project Code	Area/Facility Code	e Originato	or Dis	cipline	Do	ос Туре	Sequential No	

Table of Holds

Reference	Page No	Description

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE	Rev.	Page						
Project	Unit No	Doc. Type	Code	Seria	al No	2	4 of 33		
202947C	050	PP		00	814	2			
CLIENT REFERE	CLIENT REFERENCE								
Project Code	Area/Facility Coo	de Originato	or D	scipline	Do	ос Туре	Sequential No		

1. INTRODUCTION

LanzaTech UK Ltd is exploring the installation of a 30M gal/year (ca. 115million litres/year) Alcohol-to-Jet (ATJ) plant in Port Talbot, Wales. The ATJ plant is to consist of two technologies, an Ethanol to Ethylene (ETE) and a Ethylene to Jet Fuel (ETJ) technology. A project feasibility study was completed in 2018.

This Framework CEMP provides the initial plan based on the FEED project definition. A final CEMP, taking account of the detailed engineering design and outcomes of the Environmental Statement will be developed in due course. T.EN will support the planning and permitting process which is seen as a key success factor for the project. T.EN shall provide inputs to this process to support the third-party subcontractors which have been employed by LanzaTech for the project.

2. SCOPE OF DOCUMENT

The scope of this document is to describe the Environmental Management Plan requirements for Construction activities.

The procedures contained and referenced within this Framework CEMP do not prejudice any statutory requirements and guidelines that might be in force anytime within the Project life. Relevant impacts from new legislation or change of standards will be communicated to staff through project bulletins and training as required. These will also be included within a revision of CEMP where they impact the works.

This Framework CEMP will be reviewed on a minimum annual basis or in response to any significant changes, e.g. changes to site activities, legal and client requirements or immediately following a significant environmental incident.

3. DEFINITIONS AND ABBREVIATIONS

3.1 Definitions

COMPANY: LanzaTech

CONTRACTOR: Technip Energies

Construction Subcontractor: TBC

Information contained in this document is the work product of one or more legal entities of the Technip Energies and embodies confidential and proprietary information of the applicable entity and/or its client. Use of this information is restricted in accordance with conditions specified by the contract. Technip Energies and its affiliates disclaim any and all liabilities for any changes or modifications to this document which are made by any person other than the entity that issued the document under the applicable client contract.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	ENGINEER REFERENCE									
Project	Unit No	Doc. Type	Code	Seria	il No		5 of 33			
202947C	050	PP		00	814	2				
CLIENT REFEREN	CLIENT REFERENCE									
Project Code	Area/Facility Cod	e Originato	Originator Discipline D		Do	ос Туре	Sequential No			

3.2 Abbreviations

Abbreviation	Definition
AiP	Approval in Principle
BMS	Business Management System
BOD	Basis Of Design
BS	British Standards
СЕМР	Construction Environmental Management Plan
CWA	Construction Work Area
EDMS	Electronic Document Management System
EMP	Environmental Management Plan
EMS	Environmental Management System
ENVID	Environmental Aspect/Impact Identification
ES	Environmental Statement
FEED	Front End Engineering Design
НЕМР	Handover Environmental Management Plan
HGV	Heavy Goods Vehicle
KPI	Key Performance Indicator
MMS	Material Management System
NRW	Natural Resources Wales
RAMS	Risk Assessment and Method Statement
REAC	Register of Environmental Actions and Commitments
SOW	Scope Of Work
SPA	Supplementary Project Agreement

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE								Page
Project	Unit No	Doc. Type	C	Code	Seria	l No	n	6 of 33
202947C	050	PP			300	314	2	
CLIENT REFEREN	CE							
Project Code	Area/Facility Cod	e Originate	or	Discip	oline	Do	ос Туре	Sequential No

ТВС	To Be Confirmed
WFD	Water Framework Directive

4. **REFERENCE DOCUMENTS**

Document N	umber	Document Title
COMPANY	CONTRACTOR	
	202947C-000-PP-00104	Project Execution Plan (for FEED)
	202947C-050-PP-00903	FEED Construction and Commissioning Work Plan, organisation and Staffing
	In 202947C-000-PP-00104	Project Controls Plan
	202947C-050-PLG-00301	Consolidated Feed Project Master Schedule
	202947C-000-RT-00803	Constructability Study Report
	202947C-050-PP-00801	Project Construction Plan
	202947C-050-PP-0814	Framework Construction Environmental Management Plan (this document)
	202947C-050-PP-00811	HSE Site Security Plan
	202947C-000-PP-00501	Project Quality Plan
	202947C-050-PP-00802	Temporary Site Facilities Plan

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	Rev.	Page					
Project	Unit No	Doc. Type	Code	Serial	No		
202947C	050	PP		008	00814		7 of 33
CLIENT REFEREN	CE						
Project Code	Area/Facility Code	e Originato	or Disc	ipline	Do	ос Туре	Sequential No

4.1 CONTRACTOR Specific Reference Documents (Hold):

Document Number	Owner	Document Title
	Be issued during Execution preparation	Environmental Policy
	Be issued during Execution preparation	Sustainability Policy
	Be issued during Execution preparation	Project Management Plan
	Be issued during Execution preparation	Environmental Risks and Opportunities Assessment
	Be issued during Execution preparation	Environmental Incidents
	Be issued during Execution preparation	Major Pollution Incident Plan
	Be issued during Execution preparation	Emergency Spillage Response Plan
	Be issued during Execution preparation	Seven steps for Environmental incident planning
	Be issued during Execution preparation	Example operational Environmental Incident Action
	Be issued during Execution preparation	Environmental Incident Severity Classification Table
	Be issued during Execution preparation	Environment Incident Regulator Reporting Thresholds
	Be issued during Execution preparation	Environmental Incident Reporting Guidance for strators
	Be issued during Execution preparation	Incident Reporting and Investigation
	Be issued during Execution preparation	Risk Assessment & Method Statement
	Be issued during Execution preparation	Site Induction Records
	Be issued during Execution preparation	Environmental Training Records

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	Rev.	Page					
Project	Unit No	Doc. Type	Code	Seria	l No	2	8 of 33
202947C	050	PP		800	814	2	
CLIENT REFERENC	CE						
Project Code	Area/Facility Code	Originato	or Dise	cipline	Do	с Туре	Sequential No

Be issued during Execution preparation	Plant Maintenance and Defect Reports
Be issued during Execution preparation	Waste Carrier Licences, Waste Transfer Notes, Consignment Notes, Environmental Permits,
Be issued during Execution preparation	Environmental Complaints regarding site activities
Be issued during Execution preparation	Environmental Inspections and Audits
Be issued during Execution preparation	Environmental Briefings / Toolbox Talks
Be issued during Execution preparation	Emergency Response Plan
Be issued during Execution preparation	Project Organisation and Emergency Arrangements Chart
Be issued during Execution preparation	Personnel Emergency Evacuation Plan
Be issued during Execution preparation	Monitoring / Sampling Results required for Consent / Permit /Licence compliance

5. FRAMEWORK ENVIRONMENTAL MANAGEMENT PLANS

A framework Construction Environmental Management Plan (CEMP) has been produced at the FEED phase. The "Framework CEMP" is a document containing a series of outline environmental management plans and related documents for the Proposed Development, which is produced by the Project/COMPANY during the design stage of the Proposed Development.

The framework CEMP demonstrates how the commitments in the ES could be implemented. It also sets out the monitoring and auditing activities designed to demonstrate that such mitigation measures are carried out and that they are effective and how mitigation measures to reduce environmental impacts during the construction phase will be delivered and how compliance with environmental legislation will be reached.

The framework CEMP sets out a series of proposed measures that would be applied by the contractor to provide effective planning, management and control during

Information contained in this document is the work product of one or more legal entities of the Technip Energies and embodies confidential and proprietary information of the applicable entity and/or its client. Use of this information is restricted in accordance with conditions specified by the contract. Technip Energies and its affiliates disclaim any and all liabilities for any changes or modifications to this document which are made by any person other than the entity that issued the document under the applicable client contract.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE								Page
Project	Unit No	Doc. Type	(Code	Seria	l No	•	9 of 33
202947C	050	PP			300	814	2	
CLIENT REFERE	NCE							
Project Code	Area/Facility Coo	le Originato	or	Discip	oline	Do	ос Туре	Sequential No

construction to control potential impacts upon people, businesses and the environment.

The framework CEMP sets out the approach that will be used by CONTRACTOR to update the document to the Final CEMP once the design and construction plans have been finalised at the Detailed Design stage. Procedures and mitigation measures summarised in this iteration of the CEMP (the final CEMP) will be mandatory.

This approach, where CONTRACTOR is responsible for preparing the CEMP, aims to ensure that all potential environmental impacts identified in the ES and at the Detailed Design stage are fully addressed and suitable mitigation measures implemented. Design development is assessed against the requirements assessed in these documents.

The final CEMP will be managed alongside the CONTRACTOR'S generic and sitespecific environmental management plan and systems, meeting ISO14001 requirements. The final CEMP will be a live document and must be maintained and updated throughout the life of the project by CONTRACTOR. Environmental mitigation measures identified must be followed by all parties.

Prior to the commencement of construction, the final CEMP will take account of detailed design and construction planning and the outcome of the planning process. It will be maintained and revised during the construction period to take account of any changes in design or external factors such as regulations and standards, any unforeseen circumstances as they arise, such as new protected species or new archaeological finds, and any failings in environmental performance identified from routine inspections and audits.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE								Page
Project	Unit No	Doc. Type	Co	ode	Seria	l No	0	10 of 33
202947C	050	PP			300	314	2	
CLIENT REFEREN	VCE							
Project Code	Area/Facility Cod	le Originato	or	Discip	line	Do	ос Туре	Sequential No

6. FINAL CONSTRUCTION ENVIRONMENTAL MANAGEMENT PLAN

The final Construction Environmental Management Plan will be written at the detailed design stage and covers the main construction works.

The overall objectives of the final CEMP are to:

- to provide a mechanism for ensuring that measures to mitigate potentially adverse environmental impacts identified in the Environment Statement's (ES) are implemented,
- to ensure that good construction practices are adopted throughout the construction of the works,
- to provide a framework for mitigating impacts that may be unforeseen or that are not identified until construction is underway,
- to provide assurance to third parties that their requirements with respect to environmental performance will be met,
- to provide a mechanism for ensuring compliance with environmental legislation,
- to provide a framework for compliance auditing and inspection, to enable CPY and CTR to be assured that their aims with respect to environmental performance are being met,
- to provide trained and experienced environmental personnel to satisfy the requirements of the CPY Environmental Statement.

This Final CEMP takes due consideration of the assessments undertaken and reported within the published ES presented as part of planning application The final CEMP identifies mitigation and environmental issues associated with the following phases of construction:

- Prior to construction (e.g. advanced works, site preparation, vegetation clearance);
- During construction (e.g. works);
- Post construction, or pre-occupation, including demobilisation.

This final CEMP will be produced to ensure that all necessary measures identified during planning are incorporated into the project during the phases listed above. This

Information contained in this document is the work product of one or more legal entities of the Technip Energies and embodies confidential and proprietary information of the applicable entity and/or its client. Use of this information is restricted in accordance with conditions specified by the contract. Technip Energies and its affiliates disclaim any and all liabilities for any changes or modifications to this document which are made by any person other than the entity that issued the document under the applicable client contract.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	Rev.	Page				
Project	Unit No	Doc. Type	Code	Serial No		44600
202947C	050	PP		00814		11 of 33
CLIENT REFEREI	VCE					
Project Code	Area/Facility Coo	le Originato	or Disc	pline	Doc Туре	Sequential No

final CEMP should also be read alongside the following key documents which are contained in the Appendices of this document (once developed these documents will be included in the final CEMP at execution Phase).

7. POLICY AND PLANNING

7.1 Environmental Policy Statement

The project has an Environmental Policy that meets the requirements of ISO 14001:2015. The policy statement will be displayed on the site notice boards, publicised to all site staff and operatives, and made available to interested parties upon request.

A copy of the CONTRACTOR Environmental policy is included in Appendix A.

7.2 Sustainability Policy Statement

The project has a ESG Road Map that supports its Sustainability objectives. The policy statement will be displayed on the site notice boards, publicised to all site staff and operatives, and made available to interested parties upon request.

A copy of the 2022/2023 CONTRACTOR ESG Roadmap is included in Appendix B

A copy of the Project Sustainability Policy is included in Appendix C (Hold).

7.3 CEMP Implementation

CONTRACTOR, along with all subcontractors and suppliers will comply with the requirements of the CEMP.

The CEMP is based on the 'Plan, Do, Check, Act' model and has been developed to incorporate and take account of the environmental requirements of International Standard ISO14001:2015 and the CONTRACTOR'S Management System.

LANZATECH

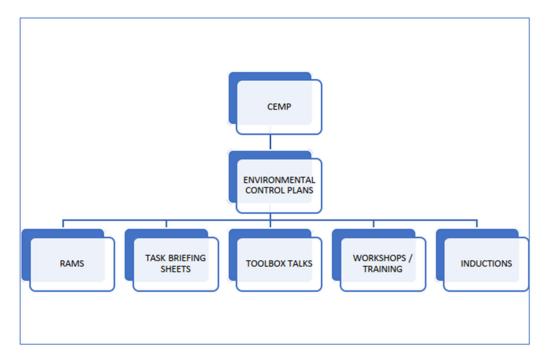
LanzaTech

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE								Page
Project	Unit No	Doc. Type	Coo	le	Seria	l No	2	40.400
202947C	050	PP			00814		2	12 of 33
CLIENT REFEREN	CE							
Project Code	Area/Facility Cod	e Originato	or	Discip	oline	Do	ос Туре	Sequential No

The CEMP provides a framework to manage all contract environmental requirements and applicable legislation. The CEMP is supported by Environmental Control Plans that define the arrangement to manage the project's environmental risks and support on site environmental performance. Task specific requirements are detailed within Risk Assessment and Method Statements (RAMS). Awareness of environmental controls will be communicated to those working for, or on behalf of the project via site induction, workshops/training, pre start briefings and tool box talks. This arrangement is shown below.


LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page	
Project	Unit No	Doc. Type	Co	ode	Seria	l No	2	40 600
202947C	050	PP			300	314	2	13 of 33
CLIENT REFERENCE								
Project Code	Area/Facility Cod	e Originato	Originator Discipline [Do	ос Туре	Sequential No	

All contractors providing a product or service will be required to provide evidence to show how they will control their environmental risks if their activities are deemed to potentially create an environmental impact. This will be reviewed against this Final CEMP, relevant specification, Scope of Works (SOW) and legislative requirements, etc. by the project environmental team at the supplier approval stage.

Inspections and audits of site activities, management, training and documentation will be conducted in order to monitor compliance with the CEMP. All documentation will be saved in CONTRACTOR'S EDMS (GAIA). All supplier requirements are defined on the SDRL (Supplier document requirements list).

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page	
Project	Unit No	Doc. Type		Code	Seria	l No	2	14 of 33
202947C	050	PP			008	314	2	
CLIENT REFERENCE								
Project Code	Area/Facility Coo	le Originat	Originator Discipline Doc		ос Туре	Sequential No		

8. ENVIRONMENTAL MANAGEMENT RESPONSABILITIES

Everyone working for, or on behalf of, the project has a responsibility for environmental performance. Site inductions will be delivered to the entire workforce, regardless of role, to raise awareness of measures/procedures/practices implemented through this plan.

COMPANY and delegated consultants acting on their behalf, CONTRACTOR and their subcontractors are all responsible for complying with the project's environmental policies, relevant environmental legislation and regulations. It is a requirement that all persons on site will be made aware of their duty of care to the environment and will be provided with sufficient training, supervision, or instruction through Site Inductions, Toolbox Talks and specific method statements as necessary.

Responsibilities for the site environmental management will be delegated to key personnel by CONTRACTOR who will manage all reporting and monitoring of environmental mitigation during the project. Where required, environmental specialists will be consulted to provide advice on specific issues or site activities, in consultation with CONTRACTOR.

The main environmental roles and responsibilities are shown in the table below.

Further details of responsibilities will be documented in individual job descriptions/appointment letters and for subcontractors, in their contract documentation.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE							Page
Project	Unit No	Doc. Type	Code	Serial N	No	n	15 of 33
202947C	050	PP		0081	4	2	
CLIENT REFERENCE							
Project Code	Area/Facility Coo	le Originato	or Disc	ipline	Do	с Туре	Sequential No

Role	Main responsibilities
CONTRACTOR Project Director	 Leadership and commitment to communicate and support the delivery of the works in line with the project's environmental and sustainability visions. Providing leadership and commitment with respect to the environmental management system. The environmental performance of the project and for encouraging others to improve the effectiveness of the EMS and performance. Promoting sustainable design and construction objectives. Setting the project's behavioural culture for sustainability, ensuring that all aspects of the final CEMP and Sustainability Action Plan are embraced by the delivery team, including the supply chain partners. Responsible for assigning appropriate roles and responsibilities within the Project Management Team that they adequately reflect the significant environmental risk and opportunities that have been identified to ensure that legal compliance obligations can be met and delivered. Providing direction to other supporting roles in the project to ensure overall targets are met. Ensuring that critical objectives, aspects, performance metrics and results are continually communicated effectively to all stakeholders. Ensuring continual improvement can be achieved.
CONTRACTOR HSES Manager	 Providing leadership and commitment with respect to the environmental management system (EMS). Overall responsibility for management of environmental matters Allocation of sufficient resources within the Health, Safety, Environment & Sustainability (HSES) Project Team. Resolution of findings from audits and inspections Chair monthly site HSES meeting. Supporting Environment & Sustainability Manager (E&SM) in meeting project E&S objectives.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page
Project	Unit No	Doc. Type	Code	Serial No	0	0	16 of 33
202947C	050	PP		00814	4	2	
CLIENT REFERENCE							
Project Code	Area/Facility Coo	le Originato	or Disc	ipline	Doc	: Туре	Sequential No

CONTRACTOR	Oversee the environmental components of the project.
Environmental and	Act as main contact for all environmental issues on site.
Sustainability Manager	Co-ordination of all environmental specialists to ensure compliance
	with the environmental requirements of the project
	Co. ordinating aits any ironmental management compliance
CONTRACTOR	Co-ordinating site environmental management compliance.
Environmental and	Ensure Scheme remains compliant with the CEMP, including
Sustainability Advisor	compliance with environmental legislation, best practice, consents,
Sustainability Advisor	commitments and objectives set.
	Updating and reviewing the CEMP throughout the works.
	Ensuring the project team have sufficient environmental training and
	co-ordinate delivery of additional training/inductions/Toolbox Talks
	where required.
	Liaison with regulatory bodies.
	Reporting environmental near misses, incidents or supply chain
	partner innovations.
	Carry out an environmental review of suppliers and sub-contractors.
	To assess environment management system arrangements and
	key policies.
	Assessing and checking survey results and updating databases,
	Environmental Control Plans (ECPs) etc. with any new information.
	To co-ordinate with the design and construction teams to ensure that
	works are planned and delivered in accordance with legal and
	contractual requirements.
	To undertake assurance activities such as periodic audits and weekly
	inspections of work sites.
	To review documentation (incl. RAMS) for work activities.
	To facilitate the investigation of complaints, incidents or exceedances.
	To provide support and direction to Stakeholder Manager to ensure compliance with the commitments register is achieved.
	To review monitoring data as provided by Specialists.
	To monitor and report environmental performance of the supply chain.
	To lead a positive environmental culture on the project to transform behaviours where required.
	To prepare environmental requirements for supply chain contracts.
	· · ·
	To undertake and co-ordinate specific environmental training to the
	construction team and workforce as required.
	To attend site meetings.
	To advise on environmental best practice.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						Rev.	Page
Project	Unit No	Doc. Type	Code	Serial N	0	n	17 of 33
202947C	050	PP		0081	4	2	
CLIENT REFERENCE							
Project Code	Area/Facility Coo	le Originat	or Disc	ipline	Doc	Туре	Sequential No

Role	Main responsibilities
CONTRACTOR Site HSE Advisor	 Providing support to the Environmental Manager. Provide site induction on environmental practices, toolbox talks, organise specialist surveys, and oversee monitoring and testing of materials as required. Monitor CONTRACTOR site environmental compliance, supervising works and construction activities on site, auditing/reviewing works and procedures including method statements as required. Ensure hours of working meet accepted noise and vibration limits set in consultation with Environmental Health Officer (EHO). Develop with Principal Contractor Site Health & Safety Officer, an Emergency Spillage Response Plan and associated protocols for incidents. Ensure Environment Agency and other stakeholder requirements are implemented for consents and permits. Recording and reporting the progress of environmental works. Report any product or service environment non-conformances.
CONTRACTOR Environmental Engineer (Ecologist, Landscape Architect, Archaeologist, Noise/Air Quality Specialist, Material/Waste Management Specialist, Contaminated Land Specialist, Occupational Health Specialist, etc.)	 Individual Environmental Specialists will be responsible for the inputs into the environmental assessment and final detailed designs. Will provide support to the construction project team in the form of preconstruction surveys, applications for licenses/consents, watching briefs and other specific issues such as protected species and landscape planting supervision. Oversee mitigation throughout the project. Provide specialist advice and instruction to the supply chain.
CONTRACTOR Community Liaison Officer (CLO)	 Key liaison with all the above and COMPANY'S Communications Lead, Stakeholder Lead and Customer lead. Single contact point on site for the community and general public. Maintain and develop Community Relations Strategy. Maintain comment and enquiries log and disseminate identified comment for response and implementation of action.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFERENCE						ev.	Page
Project	Unit No	Doc. Type	Code	Serial No		0	40.00
202947C	050	PP		00814		2	18 of 33
CLIENT REFERENCE							
Project Code	Area/Facility Coo	de Originato	or Disc	ipline	Doc Type		Sequential No

Role	Main responsibilities
Delivery Team (including Procurement Team)	 To attend the project induction prior to commencing work. To provide their own environmental management plan and risk assessments in RAMS as required. To promote a right first time approach. To ensure environmental sustainability reporting data is submitted accurately and on time. To ensure environmental measures are implemented in line with the method statements and risk assessments. To work considerately with a good working ethic to minimise adverse environmental impacts and follow all site rules communicated during the briefings and project training sessions. To adhere to instructions provided by an Ecological Clerk of Works, Archaeologist, etc. To report near misses, positive interventions and all incidents no matter how minor. To comply with any environmental consents required to complete the planned works.

Contact information for personnel with environmental responsibilities is as follows (Hold):

Name	Position	Organisation	Contact Details
	Project Director	COMPANY	Email: Phone Number:
	Project Director	CONTRACTOR	Email: Phone Number:
	Site Manager	CONTRACTOR	Email: Phone Number:
	HSES Manager	CONTRACTOR	Email: Phone Number:
	Construction Manager	CONTRACTOR	Email: Phone Number:
	Community Liaison Officer	CONTRACTOR	Email: Phone Number:

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE					Rev.	Page
Project	Unit No	Doc. Type	Code	Serial	No	0	40600
202947C	050	PP		008	14	2	19 of 33
CLIENT REFEREN	ICE						
Project Code	Area/Facility Cod	e Originato	or Disc	ipline	Do	с Туре	Sequential No

9. DETAILED CONTRACTOR RESPONSIBILITIES PRIOR TO CONSTRUCTION

CONTRACTOR is responsible for approving the appointment of the Environment and Sustainability Manager/Director and any environmental specialists prior to any work starting on site.

CONTRACTOR is responsible for the following prior to construction commencement;

- Developing final CEMP (using this framework CEMP as a basis).
- Defining roles and responsibilities for their own and their key sub-contractors' personnel relating to environmental issues (see Section 8);
- Developing an environmental training plan covering all personnel;
- Developing a programme of internal and sub-contractor inspections/monitoring;
- Developing project-specific emergency procedures for environmental incidents;
- Finalising and implementing a programme for works to allow all preconstruction surveys to be arranged and completed within the required timeframe;
- Agreeing a non-compliance reporting procedure with The COMPANY to manage any environmental incidents or non-compliance events for the project; and
- Developing the required Environmental Control Plans (ECPs), see Section 7 for list. These will be updated as required up to construction commencement to reflect any new, relevant information provided by COMPANY or other statutory consultees (e.g. further consent conditions, landowner agreements) or through design development, construction planning, preconstruction surveys etc.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE						Rev.	Page
Project	Unit No	Doc. Type	Code		Serial	No	0	00.100
202947C	050	PP			008	14	2	20 of 33
CLIENT REFEREN	NCE							
Project Code	Area/Facility Coo	le Originate	or	Discip	line	Do	с Туре	Sequential No

10. DETAILED CONTRACTOR RESPONSIBILITIES DURING CONSTRUCTION

CONTRACTOR is responsible on site for delivering the construction phase commitments in the ES and Register of Environmental Actions and Commitments (REAC), as described within the project design construction models, drawings and specifications, and controlled by this Framework CEMP.

CONTRACTOR will implement the procedures set out in this Framework CEMP with technical advice from competent environmental specialists.

CONTRACTOR is responsible for all their subcontractors on site and for ensuring these sub-contractors comply with the requirements of this Framework CEMP.

CONTRACTOR is responsible for ensuring that there are no breaches in legislation and that good practice is followed throughout the duration of the construction.

CONTRACTOR must ensure that all on-site works are adequately monitored.

Environmental Objectives & Targets will be developed in conjunction with CPY and will be reviewed on a monthly basis at the project progress meetings. A copy of the Project's Objectives and Targets, and associated progress reports, will be held in the Project Environmental Files and included in project monthly reports.

Risk Assessments & Method Statements (RAMS) and Environmental Control Plans (ECPs) and other associated documents (such as Section 61 of Control of Pollution Act 1974, Discharge consent by NRW, etc.) will be used to ensure all environmental commitments are delivered on site. The implementation of the requirements of the RAMS, ECPs and delivery of mitigation measures relating to the project will be the responsibility of CONTRACTOR.

Any improvements or deviations relating to environmental matters required to the RAMS and/or ECPs shall be approved by the Environment and Sustainability Manager (and may be subject to other consents where required). CONTRACTOR will provide regular feedback and information to COMPANY Project Manager and Environmental

Information contained in this document is the work product of one or more legal entities of the Technip Energies and embodies confidential and proprietary information of the applicable entity and/or its client. Use of this information is restricted in accordance with conditions specified by the contract. Technip Energies and its affiliates disclaim any and all liabilities for any changes or modifications to this document which are made by any person other than the entity that issued the document under the applicable client contract.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE						Rev.	Page
Project	Unit No	Doc. Type	Code		Serial N	No	n	04.00
202947C	050	PP			0081	14	2	21 of 33
CLIENT REFEREI	VCE							
Project Code	Area/Facility Cod	e Originato	or	Disciplin	ne	Do	с Туре	Sequential No

Manager on the progress and success in delivering all mitigation and commitments on site.

The REAC will be updated to demonstrate progress and will be kept by the project for environmental auditing purposes, with updates periodically sent to COMPANY.

All site personnel have the responsibility and authority to halt works in any activity where environmental commitments are not being successfully delivered or where legal requirements are being breached.

All site personnel will be encouraged to draw attention to any environmental risk or potential environmental risk arising on site (for example, refuelling being carried out too close to a watercourse or working outside the agreed limits of deviation for any aspect of the works). This approach will be promoted in all site inductions and training.

11. CONSTRUCTION PLANNING

The current expectation is that the construction works will be split into phases with the following table providing an indicative construction programme.

Construction working hours will generally be:

- Monday to Friday 07:00 to 19:00 and
- Saturday 07:00 to 13:00,

however, it is likely that some construction activities will be required to be 24 hours at certain times. This is principally construction activities that cannot be stopped, such as concrete pouring. Where on-site works are to be conducted outside the core hours, they will comply with the restrictions stated in this Final CEMP and any other restrictions agreed with the planning authorities.

Activities that could generate a construction noise or light nuisance impact will be assessed for their potential impact prior to being undertaken at night, including but not limited to sheet piling, piling, use of impact wrenches, concrete scabbling, use of reversing sirens, and concrete jack hammering. Construction noise limits will need to be in compliance with the construction noise scheme agreed with relevant planning authority.

LANZATECH

LanzaTech

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	ENCE						Rev.	Page
Project	Unit No	Doc. Type	Co	de	Seria	l No	2	00.000
202947C	050	PP			300	314	2	22 of 33
CLIENT REFERENC	CE							
Project Code	Area/Facility Code	Originato	or	Discip	line	Do	ос Туре	Sequential No

Indicative Construction Planning

The table below to be completed as part of Final CEMP during the detailed engineering phase.

	M-5	M-4	M-3	M-2	M-1	M1	M2	M3	M4	M5	M6	M7	M8	6W	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	M23	M24
Enabling Works																													
Site Establishment																													
Construction																													
Utilities																													
Commissioning																													

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	RENCE					Rev.	Page
Project	Unit No	Doc. Type	Code	Seria	al No		00.1.00
202947C	050	PP		00	814	2	23 of 33
CLIENT REFEREN	CE						·
Project Code	Area/Facility Cod	e Originato	or E	iscipline	Do	ос Туре	Sequential No

12. CONSTRUCTION LAYDOWN AND WELFARE FACILITIES

Proposed construction laydown areas, including storage, site offices, welfare facilities and car parking, will be located at various places within the site boundary.

13. TRAFFIC MANAGEMENT AND OFF SITE DELIVERY ROUTES

During construction, CONTRACTOR will ensure that the impacts from construction traffic on the local community (including local residents and businesses and users of the surrounding transport network) are minimised, where reasonably practicable. This will be ensured by implementing the measures set out in the Framework Construction Workers' Travel Plan (CWTP) and the Framework Construction Traffic Management Plan (CTMP) respectively; These plans will be developed from the Framework status to be included with this CEMP prior to the start of construction.

The Framework CTMP provides details of the designated routes for Heavy Vehicle movements and this will be set out in accordance with the Transport Assessment and Environmental Statement produced by others.

The use of port facilities are not considered to be part of the project logistic.

Final details of the designated routes for HGV movements and worker car movements will be detailed in the CWTP and CTMP prior site mobilization.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	RENCE					Rev.	Page
Project	Unit No	Doc. Type	Code	Serial	No	2	04 600
202947C	050	PP		008	14	2	24 of 33
CLIENT REFEREN	ICE						
Project Code	Area/Facility Cod	e Originato	or Disc	ipline	Do	ос Туре	Sequential No

14. SPOIL MANAGEMENT

Spoil will arise from the construction activities of the project. The CONTRACTOR will take all reasonable measures to apply the waste hierarchy which is, in priority order, as follows:

During enabling works and construction, spoil arising will be temporarily stockpiled within the Site boundary before either beneficial re-use on site for use in development platform construction or being taken off-site by HGV for treatment and/or disposal at a local permitted facility (in the local area) or for reuse in other development sites in the area.

Spoil will be stockpiled in areas at low risk of flooding within the Site boundary on the site. The size of the stockpile(s) will be minimised where possible by excavation works being constructed in parallel with development platform construction which will utilise spoil arisings where these are geotechnically or chemically suitable.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE					Rev.	Page		
Project	Unit No	Doc. Type	Code	Seria	al No		05 (00		
202947C	050	PP		00	814	2	25 of 33		
CLIENT REFERE	NCE						·		
Project Code	Area/Facility Coo	le Originato	or D	iscipline	D	ос Туре	Sequential No		

In addition, there will be progressive off-site removal of geotechnically unsuitable or contaminated materials for re-use, treatment and/or disposal. Stockpile heights will therefore be low and there is sufficient area within the Site boundary to accommodate the volume of spoil expected to be generated.

Suitable measures will be put in place to prevent sediment being washed into watercourses, and the stockpiles will be visually monitored for wash away during and after periods of prolonged rainfall.

The nearest facility for excavated material surplus area is Briton Ferry Recycling Center at Port Talbot.

Spoil will be sampled and any contaminated spoil identified will be managed in accordance with the Site Waste Management Plan (SWMP), Material Management Plan (MMP), Site Preparation Plan and the Site Remediation Plan which will be prepared and appended to this Framework CEMP in the Execute phase.

A Framework Site Waste Management Plan (SWMP) has been developed as part of the Framework CEMP which allows for waste streams to be estimated and monitored and goals set with regards to the waste produced. The MMP will specify that any potentially contaminated soils will be managed in accordance with:

Defra Construction Code of Practice for the Sustainable Use of Soil on Development Sites

(Defra, 2009); and

Definition of Waste: Development Industry Code of Practice (CL:AIRE, 2011).

Any suspected contaminated spoil will be placed on an impermeable membrane to prevent the leaching of any contaminants into the subsurface or watercourses. Site specific Screening Verification Criteria for the classification of soils for re-use or disposal will be derived by the Applicants in accordance with the MMP.

All spoil will be processed and managed in accordance with The Waste (England and Wales) Regulations 2011 (as amended).

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE						Rev.	Page
Project	Unit No	Doc. Type	Cod	de	Serial	No	2	00.00
202947C	050	PP			008	14	2	26 of 33
CLIENT REFEREN	VCE							
Project Code	Area/Facility Coo	le Originate	or	Discipl	ine	Do	с Туре	Sequential No

Recycling and Disposing of Waste

In order to control the waste generated on Site during site preparation and construction, CONTRACTOR will separate the main waste streams on Site, prior to them being taken to a waste facility for recycling or disposal. As outlined above spoil will be beneficially used onsite where possible to minimise the amount of spoil that requires treatment or disposing of offsite.

The Site Waste Management Plan (SWMP) appended to this Framework CEMP specifies the waste streams to be estimated and monitored and goals set with regards to the waste produced. Under the DCO requirements, the SWMP must be submitted to and approved by the relevant planning authority before construction works commence.

The SWMP requires the CONTRACTOR segregates waste streams on-site, prior to them being taken to a licensed waste facility for recycling or disposal. All waste to be removed from the Site will be undertaken by fully licensed waste carriers and taken to licensed waste facilities.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE					Rev.	Page
Project	Unit No	Doc. Type	Code	Seri	al No	2	07.00
202947C	050	PP		00	814	2	27 of 33
CLIENT REFEREN	VCE						·
Project Code	Area/Facility Coo	e Originato	or	Discipline	Do	ос Туре	Sequential No

15. ENVIRONMENTAL CONTROL PLANS

A project dedicated control plan will be developed for construction phase. This will take account of construction specific measures in the Environmental Management Plan (EMP) in accordance with the ES by others:

- Built Heritage and Archaeology
- Ground Conditions and Contamination
- Flood Risk and Hydrology
- Transport
- Lighting
- Terrestrial ecology
- Marine ecology
- Landscape and visual
- Socio-economics and human health
- Climate change
- Air quality
- Noise and vibration

Plan will detail the likely sources of emissions that may have an impact on these above Environmental Aspects and the steps that the construction team will put in place to manage and mitigate these.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFE	RENCE						Rev.	Page
Project	Unit No	Doc. Type		Code	Seria	l No	2	00.100
202947C	050	PP			00	314	2	28 of 33
CLIENT REFERE	NCE							
Project Code	Area/Facility Coo	le Originato	or	Discip	oline	Do	ос Туре	Sequential No

APPENDIX A: CONTRACTOR HSES POLICY

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	ENCE						Rev.	Page
Project	Unit No	Doc. Type		Code	Seria	l No	•	00 (00
202947C	050	PP			008	314	2	29 of 33
CLIENT REFERENC	CE						•	·
Project Code	Area/Facility Code	Originato	r	Discip	line	Do	ос Туре	Sequential No

Global HSE and Security Policy POL-COR-011-HSE-Rev.2 - Feb 2021

This policy defines Technip Energies absolute commitment to the Health, Safety, Environment and Security (HSES) of all those who can either directly or indirectly be affected by our business activities.

HSES is a key element of our foundational beliefs (combined under the Safety belief) and managed as an integral part of our business, therefore we must never compromise on health, safety, environment or security to achieve our objectives.

We are committed to fostering an incident-free environment worldwide, through:

- Our fundamental conviction that all incidents are preventable
- Setting health, safety, environmental and security objectives specific to Technip Energies for the scope of our activities and extending them in a life cycle perspective to achieve continual improvement of the HSES management system and to continually enhance our HSES performance
- · Fostering a leadership culture driven by engagement and accountability to ensure physical and mental health, safety, environment and security and a culture where we look after each other
- Committing and allocating adequate resources and expertise to continually and proactively eliminate hazards, reduce risks and prevent injury, ill health and environmental impact related to our activities, through engineering, process improvements, technologies and on-site execution
- Operating in a manner that protects the environment by providing sustainable solutions to minimize our carbon and environmental footprint while improving our energy and resource efficiency
- Securing our people, assets, technology, sensitive information and reputation
- Fulfilling, and when we deem necessary, exceeding legal, compliance and other obligations to meet our foundational beliefs
- Implementing and encouraging consultation and participation of workers.

Our success and continual improvement will be measured through the reduction of incidents, risks, and environmental footprint with clear and meaningful performance indicators.

HSES is everyone's responsibility. Every person is encouraged and expected to stop any work if they consider conditions are unsafe, in any way.

To comply with this policy is mandatory and the responsibility of all employees and all of those engaged and working to execute our activities. Visible commitment of management is the enabler of this compliance.

400

Arnaud Pieton Chief Executive Officer February 2021

Information contai

onfidential and

proprietary information of the applicable entity and/or its client. Use of this information is restricted in accordance with conditions specified by the contract. Technip Energies and its affiliates disclaim any and all liabilities for any changes or modifications to this document which are made by any person other than the entity that issued the document under the applicable client contract.

LANZATECH

LanzaTech

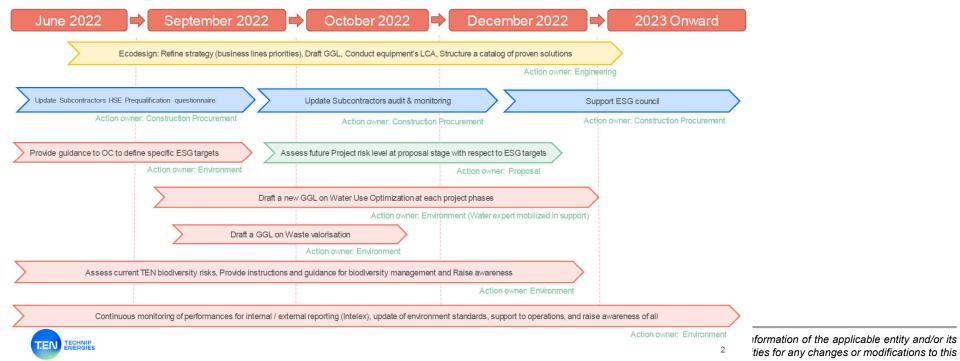
PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFEI	RENCE		Rev.	Page						
Project	Unit No	Doc. Type	Code	Seria	l No	2	00.100			
202947C	050	PP		00814		2	30 of 33			
CLIENT REFERENCE										
Project Code	Area/Facility Code Originator Discipline		Do	ос Туре	Sequential No					

APPENDIX B: ESG ROADMAP 2022-2023

LANZATECH


LanzaTech

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

ENGINEER REFER	RENCE		Rev.	Page						
Project	Unit No	Doc. Type	Code	Serial N	lo	2	04.00			
202947C	050	PP		0081	4	2	31 of 33			
CLIENT REFERENCE										
Project Code	Area/Facility Code	e Originato	Originator Discipline		Doc Ty	ре	Sequential No			

Environmental Action Plan 2022 - 2023

чосителя which are made by any person other than the entity that issued the document under the applicable cheric contract.

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN

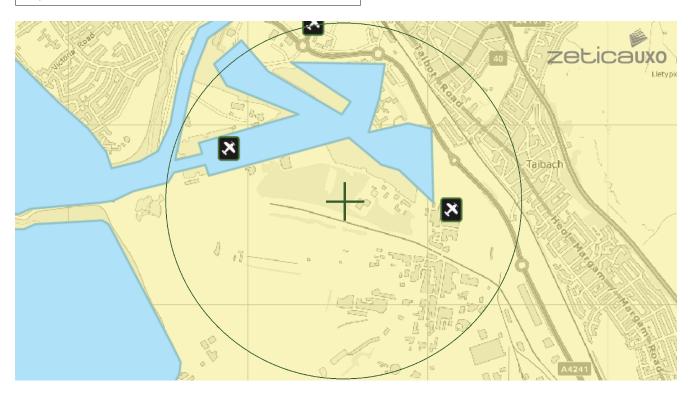
ENGINEER REFE	RENCE		Rev.	Page						
Project	Unit No	Doc. Type	Code	Serial	No	2				
202947C	050	PP		00814		2	32 of 33			
CLIENT REFERENCE										
Project Code	Area/Facility Cod	e Originato	inator Discipline		Do	с Туре	Sequential No			

APPENDIX C: PROJECT SUSTAINABILITY POLICY [HOLD]

LANZATECH

PORT TALBOT, WALES

FRAMEWORK CEMP – CONSTRUCTION ENVIRONMENT MANAGEMENT PLAN


ENGINEER REFER	ENCE		Rev.	Page							
Project	Unit No	Doc. Type		Code	Seria	l No	•	00 (00			
202947C	050	PP			008	00814		33 of 33			
CLIENT REFERENCE											
Project Code	Area/Facility Code Originator Discip		oline	е Doc Type		Sequential No					

End of document

SITE LOCATION

Map Centre: 276544,188579

LEGEND

High: Areas indicated as having a bombing density of 50 bombs per 1000acre
 Moderate: Areas indicated as having a bombing density of 15 to 49 bombs per 1000acre.
 Low: Areas indicated as having 15 bombs per 1000acre or less.
 Low: Areas indicated as having 15 bombs per 1000acre or less.
 UNO find
 UN

How to use your Unexploded Bomb (UXB) risk map?

The map indicates the potential for Unexploded Bombs (UXB) to be present as a result of World War Two (WWII) bombing.

You can incorporate the map into your preliminary risk assessment* for potential Unexploded Ordnance (UXO) for a site. Using this map, you can make an informed decision as to whether more in-depth detailed risk assessment* is necessary.

What do I do if my site is in a moderate or high risk area?

Generally, we recommend that a detailed UXO desk study and risk assessment is undertaken for sites in a moderate or high UXB risk area.

Similarly, if your site is near to a designated Luftwaffe target or bombing decoy then additional detailed research is recommended.

More often than not, this further detailed research will conclude that the potential for a significant UXO hazard to be present on your site is actually low.

Never plan site work or undertake a risk assessment using these maps alone. More detail is required, particularly where there may be a source of UXO from other military operations which are not reflected on these maps.

If my site is in a low risk area, do I need to do anything? If both the map and other research confirms that there is a low potential for UXO to be present on your site then, subject to your own comfort and risk tolerance, works can proceed with no special precautions.

A low risk really means that there is no greater probability of encountering UXO than anywhere else in the UK.

If you are unsure whether other sources of UXO may be present, you can ask for one of our **pre-desk study assessments (PDSA)**

If I have any questions, who do I contact?

tel: +44 (0) 1993 886682

email: uxo@zetica.com

web: www.zeticauxo.com

The information in this UXB risk map is derived from a number of sources and should be used in conjunction with the accompanying notes on our website: (https://zeticauxo.com/downloads-and-resources/risk-maps/)

Zetica cannot guarantee the accuracy or completeness of the information or data used and cannot accept any liability for any use of the maps. These maps can be used as part of a technical report or similar publication, subject to acknowledgment. The copyright remains with Zetica Ltd.

It is important to note that this map is not a UXO risk assessment and should not be reported as such when reproduced.

*Preliminary and detailed UXO risk assessments are advocated as good practice by industry guidance such as CIRIA C681 'Unexploded Ordnance (UXO), a guide for the construction industry'.

Document control	2022s0514	22s0514 Outline Surface Water Drainage Strategy							
Contributing designers	Revision	Purpose of issue	Checked	Reviewed	Date				
Faye Tomalin	P01	Planning / SAB pre-application consultation	René Dobson	René Dobson	02/06/2023				

Stage 1				Stage 2 Eliminate / Reduce	Stage 3		Stage 4 Control	
Identi Ref. no.		Key health and safety <u>hazards</u> and their possible effects	People/ environment at risk from the hazard	<u>Design</u> measures taken to eliminate the hazard or reduce the risk	Significant <u>residual</u> hazards and risks	Communication method		Proposed <u>control</u> measures
Guidance	Consider all aspects involved in each stage of interface with the site, environment and structure(s).	Record the key hazards and their potential consequences.	Identify the categories of people at risk.	Include obtaining adequate data for design certainty and any further studies carried out during the risk evaluation process. Proposed measures to be taken by constructors and operators are to be included in Stage 4.	Provide details of residual hazards and risks that will need to be communicated and managed.	Record how information is provided, whether on drawings, pre-construction information, buildability statement, specification, reports or H&S File	Record the name of designers, contractors, the client or other stakeholders who are to ensure the significant residual risk is minimised and controlled.	Recommend measures to be taken by the risk owner(s) to minimise and control the significant residual risk.
Design))		1				1	
Des1	Design of drainage	Hazards: Underground services crossing the site – Currently unknown Risks: striking services, death, injury, damage to infrastructure	Site personnel. Existing infrastructure. Public.	Hazard cannot be eliminated by design. Available information has been reviewed and mapped.	Potential unknown services.	DRA	Designer at detailed stage (identifying known risks) Contractor (construction of the scheme)	Detailed survey of services prior to construction. Liaison with utility providers.
Des2	Design of drainage	Hazard: Ground and groundwater conditions: Known high groundwater level. Possible risk of contaminated ground at depth Risk: Inundation or instability, injury, death, contamination.	Site personnel. Onsite machinery. Natural Environment (watercourses).	Hazard cannot be eliminated by design. Preliminary drainage design assumes largely shallow SuDS features. Pipework may be at depth and cannot be eliminated by design	Ground and groundwater conditions	DRA	Designer (identifying known risks) Contractor (construction of the scheme)	Follow recommendations from the ground investigation report: Some groundwater management may be required to ensure the protection of the earthworks and materials.
Des3	Design of drainage	Hazard: Unexploded ordnance Risk: Striking ordnance, death, injury, damage to infrastructure	Site personnel. Public. Machinery. Infrastructure.	An unexploded ordnance map has been consulted at zeticauxo.com This has highlighted that there is a low risk of finding UXO across the proposed development site.	Low risk from UXO	DRA	Designer (identifying known risks) Contractor (construction of the scheme).	Risk assessments and method statements to be prepared encase UXO is encountered on site.

Stage 1 Identi				Stage 2 Stage 3 Eliminate / Reduce Inform			Stage 4 Control	
Ref. no.	Project element, material or activity	Key health and safety <u>hazards</u> and their possible effects	People/ environment at risk from the hazard	Design measures taken to eliminate the hazard or reduce the risk	Significant <u>residual</u> hazards and risks	Communication method	Risk owner(s)	Proposed <u>control</u> measures
Des4	Design of above ground SuDS features	Hazard: Excavated SuDS features. Water Risk: Injury and drowning	Site personnel. Public.	Hazard cannot be eliminated. Preliminary design undertaken in accordance with CIRIA C753. Depth of SuDS features have been designed to facilitate hydraulic performance without increased depth of SuDS features more than required.	SuDS features and water.	DRA	Owner/operator/ scheme designer	Detailed design should consider the location of SuDS features next to vehicular access routes to reduce the risk of vehicles entering SuDS assets. Passive surveillance on all above ground SuDS features is good due to the presence of roads and well-used footpaths and good visibility. Features mainly comprise of gravel substrate at road level Maintenance schedule to be prepared.

Stage 1 Identi				Stage 2 Eliminate / Reduce	Stage 3 Inform		Stage 4 Control	
Ref. no.	Project element, material or activity	Key health and safety <u>hazards</u> and their possible effects	People/ environment at risk from the hazard	Design measures taken to eliminate the hazard or reduce the risk	Significant <u>residual</u> hazards and risks	Communication method	Risk owner(s)	Proposed <u>control</u> measures
Constr	ruction		•					•
Con1	Excavations	Hazard: Working at height Excavated drainage Features Water Underground services crossing the site Ground and Groundwater conditions Risk: Death, injury, drowning, inundation, striking of services.	Site personnel. Public. Existing Infrastrucure.	Hazard cannot be eliminated by design Available information has been reviewed and mapped. Depth of SuDS features have been designed to facilitate hydraulic performance without increased depth of SuDS features more than required.	Potential unknown services.	DRA	Contractor	Early involvement of temporary works designer recommended. Risk assessments and method statements and adequate briefing of site personnel. Follow recommendations arising from ground investigation report. Detailed survey of services prior to construction. Liaison with utility providers. Edge protection/barriers and where possible harnesses. Use inspection chambers instead of manholes to prevent confined space risks.
Con2	Plant/ material deliveries	Hazard: The site can be accessed from the eastern boundary by the Unnamed Port Road Supporting Infrastructure Unauthorised access by members of public. Risk: Public are struck by machinery. Death, injury.	Site personnel. Public.	Hazard cannot be eliminated by design. Inform the public of construction working hours and activities.	Site access	DRA	Contractor	Consider access to site, road width and expected levels of traffic. Risk assessments and method statements and adequate briefing of site personnel. Informing the public of construction activities. Construction compound should be fenced off to prevent public access.

Project Dragon - CDM Regs (2015) File - LANT30006 - Rev A - 09 June 2023	www.jbagroup.co.uk
Lemplate reference: 21-028	www.jbaconsulting.com
Template revision date: April 2017	www.jbaconsulting.ie www.jbarisk.com

Stage 1 Identi				Stage 2 Eliminate / Reduce	Stage 3 Inform		Stage 4 Control	
Ref. no.	Project element, material or activity	Key health and safety <u>hazards</u> and their possible effects	People/ environment at risk from the hazard	<u>Design</u> measures taken to eliminate the hazard or reduce the risk	Significant <u>residual</u> hazards and risks	Communication method	Risk owner(s)	Proposed <u>control</u> measures
Con 3	Connection of drainage outfall into dock	Hazard: Working near water. Risk: Drowning and inundation.	Site personnel.	Hazard cannot be eliminated by design.	Water	DRA	Contractor	The work is to be undertaken during low tide when outfall depth is available in dry conditions
Con 4	Japanese Knotweed	Hazard: Japanese Knotweed Risk: Pollution and contamination	Natural Environmental Site personnel	Japanese Knotweed should be managed in line with the site and contractors biosecurity policy	Japanese Knotweed	DRA	Contractor	Japanese Knotweed should be managed in line with the site and contractors biosecurity policy
Operat	ion & Maintenance							
O&M1	Drainage system in operation	Hazard: Potential flooding Risk: Site inundation	Maintenance personnel. Residents. Infrastructure.	Hazard cannot be eliminated by design. Design drainage to an appropriate design life and design storm event. Provide safe overland routing for exceedance flows based on site levels.	Flooding during exceedance events.	Operation and maintenance manual (to be prepared) DRA	Asset owner/operator	Regular maintenance in accordance with O&M manual, normal site safety controls, designated overland flow routes
O&M2	Maintenance and inspections of drainage system	Hazard: Water Working at height Risk: Waterbourne diseases Injury and death	Maintenance personnel	Hazard cannot be eliminated by design.	Water and working at height.	Operation and maintenance manual (to be prepared)	Asset owner/operator	Edge barriers and harnesses to be used. Inspection and maintenance activities to be undertaken during dry weather periods.
Demolit	ion	L						
Dem1	Removal of drainage features requiring excavation	Hazards and risks: largely as per the construction stage, except that the removal of the drainage system will increase a risk of flooding to the site.	Site personnel. Public.	Reinstatement of site to greenfield conditions or replacement SuDS based drainage system.	Ground conditions, disturbance of services. Increase of flood risk.	DRA	Demolition contractor	Full as-built records, specifications and maintenance procedures included in O&M manual to aid in planning of demolition. Materials brought to site to be from specified providers.

Project Dragon - CDM Regs (2015) File - LANT30006 - Rev A - 09 June 2023	www.jbagroup.co.uk
Lemplate reference: 21-028	www.jbaconsulting.com www.jbaconsulting.ie
Template revision date: April 2017	www.jbarisk.com

Environmental Considerations

Stage 1 Identi				Stage 2 Eliminate / Reduce	Stage 3 Inform		Stage 4 Control	
Ref. no.	Project element, material or activity	Key environmental <u>hazards</u> and their possible effects	<u>Who or what</u> is at risk from the hazard	<u>Design</u> measures taken to eliminate the hazard or reduce the risk	Significant <u>residual</u> hazards and risks	Communication method	Risk owner(s)	Proposed <u>control</u> measures
Guidance	Consider all aspects involved in each stage of interface with the site, environment and structure(s).	Record the key hazards and their potential consequences.	Identify the categories of people, animals or environments at risk.	Include obtaining adequate data for design certainty and any further studies carried out during the risk evaluation process. Proposed measures to be taken by constructors and operators are to be included in Stage 4.	Provide details of residual hazards and risks that will need to be communicated and managed.	Record how information is provided, whether on drawings, pre-construction information, buildability statement, specification, reports or H&S File	Record the name of designers, contractors, the client or other stakeholders who are to ensure the significant residual risk is minimised and controlled.	Recommend measures to be take by the risk owner(s) to minimise and control the significant residua risk.
Design								
Constr	uction	T					1	
Con1	Construction of drainage system	Hazard: Sediment and Oil Risk: Pollution of watercourses/drainage systems during construction, with sediments and oils	Water bodies	Hazard cannot be eliminated by design.	Pollution	Construction Management Plan (to be prepared)	Contractor	Risk assessment and method statement undertaken to avoid pollution during the works. Water from excavations not to be connected to the drainage system. Use of silt curtains, bunded storage tanks, spill kits envisaged. Construction Environmental Management Plan to be prepared and followed.
Con 2	General site clearance	Hazard: Japanese Knotweed Risk: Spread of Invasive Non-native Species	Environment	Hazard cannot be eliminated by design.	Japanese Knotweed	DRA	Contractor	Relevant biosecurity policy and Japanese Knotweed management plan
Operat	ion & Maintenance	1	1	1	1	1	1	1
O&M1	Inspection and clearance of drainage elements	Hazard: Removed vegetation and sediment Risk: Pollution	Environment Maintenance personnel	Hazard cannot be eliminated by design.	Pollution	Operation and maintenance manual (to be prepared)	Asset owner/operator	Regular maintenance in accordance with O&M manual normal site safety controls. Materials/sediments removed to be treated as contaminated and disposed of to a licenced waste management facility

	www.jbagroup.co.uk	
Lemplate reference: 21-028	www.jbaconsulting.com www.jbaconsulting.ie	
	www.jbarisk.com	

Environmental Considerations

Stage 1 Identify			Stage 2 Stage 3 Eliminate / Reduce Inform			Stage 4 Control		
Ref. no.	Project element, material or activity	Key environmental <u>hazards</u> and their possible effects	<u>Who or what</u> is at risk from the hazard	Design measures taken to eliminate the hazard or reduce the risk	Significant <u>residual</u> hazards and risks	Communication method	Risk owner(s)	Proposed <u>control</u> measures
Demol	ition							
Dem1	Removal of the drainage system/ general demolition activities	Hazards and risks: largely as per the construction stage.	Water bodies, groundwater	SuDS based drainage system to be provided, or site returned to greenfield conditions.	Pollution	Operation and Maintenance manual	Demolition contractor	 Full as-built records, specifications and maintenance procedures included in O&M manual to aid in planning of demolition Risk assessment and method statement undertaken to avoid pollution during the works. Water from excavations not to be connected to the drainage system. Use of silt curtains, bunded storage tanks, spill kits envisaged. Any materials brought to site are to be from a licensed supplier.

Ms Faye Tomalin JBA Consulting 8 Kings Chambers High Street Newport Gwent NP20 1FQ Developer Services PO Box 3146 Cardiff CF30 0EH

Tel: +44 (0)800 917 2652 Fax: +44 (0)2920 740472 E.mail: developer.services@dwrcymru.com Gwasanaethau Datblygu Blwch Post 3146 Caerdydd CF30 0EH

Ffôn: +44 (0)800 917 2652 Ffacs: +44 (0)2920 740472 E.bost: developer.services@dwrcymru.com

Date: 19/04/2023 Our Ref: PPA0007739

Dear Ms Tomalin

Grid Ref: 276424 188655 Site Address: Pheonix Wharf, Neath Development: Industrial Unit

I refer to your pre-planning enquiry received relating to the above site, seeking our views on the capacity of our network of assets and infrastructure to accommodate your proposed development. Having reviewed the details submitted I can provide the following comments which should be taken into account within any future planning application for the development.

APPRAISAL

Firstly, we note that the proposal relates to a manufacturing development on land at Phoenix Wharf and acknowledge that the site comprises of a potential windfall development with no allocated status in the Local Development Plan (LDP). Accordingly, whilst it does not appear an assessment has been previously undertaken of the public sewerage and watermains systems, we offer the following comments as part of our appraisal of this development.

Public Sewerage Network

Welsh Water is owned by Glas Cymru - a 'not-for-profit' company.

Mae Dŵr Cymru yn eiddo i Glas Cymru - cwmni 'nid-er-elw'

The proposed development site is located in the immediate vicinity of a combined public sewerage system which drains to Afan New Works Wastewater Treatment Works (WwTW).

You are also advised that some public sewers and lateral drains may not be recorded on our maps of public sewers because they were originally privately owned and were transferred into public ownership by nature of the Water Industry (Schemes for Adoption of Private Sewers) Regulations 2011. The presence of such assets may affect the proposal. In order to assist you may contact Dwr Cymru Welsh

We welcome correspondence in Welsh and English

Dŵr Cymru Cyf, a limited company registered in Wales no 2366777. Registered office: Pentwyn Road, Nelson, Treharris, Mid Glamorgan CF46 6LY Rydym yn croesawu gohebiaeth yn y Gymraeg neu yn Saesneg

Dŵr Cymru Cyf, cwmni cyfyngedig wedi'i gofrestru yng Nghymru rhif 2366777. Swyddfa gofrestredig: Heol Pentwyn Nelson, Treharris, Morgannwg Ganol CF46 6LY. Water on 0800 085 3968 to establish the location and status of the apparatus in and around your site. Please be mindful that under the Water Industry Act 1991 Dwr Cymru Welsh Water has rights of access to its apparatus at all times.

Surface Water Drainage

As of 7th January 2019, this proposed development is subject to Schedule 3 of the Flood and Water Management Act 2010. The development therefore requires approval of Sustainable Drainage Systems (SuDS) features, in accordance with the 'Statutory standards for sustainable drainage systems – designing, constructing, operating and maintaining surface water drainage systems'. As highlighted in these standards, the developer is required to explore and fully exhaust all surface water drainage options in accordance with a hierarchy which states that discharge to a combined sewer shall only be made as a last resort. Disposal should be made through the hierarchical approach, preferring infiltration and, where infiltration is not possible, disposal to a surface water drainage body in liaison with the Land Drainage Authority and/or Natural Resources Wales.

It is therefore recommended that the developer consult with Neath Port Talbot County Borough Council, as the determining SuDS Approval Body (SAB), in relation to their proposals for SuDS features. Please note, DCWW is a statutory consultee to the SAB application process and will provide comments to any SuDS proposals by response to SAB consultation. Please refer to further detailed advice relating to surface water management included in our attached Advice & Guidance note. In addition, please note that no highway or land drainage run-off will be permitted to discharge directly or indirectly into the public sewerage system.

Foul Water Drainage – Sewerage Network

We have considered the impact of domestic foul flows generated by the proposed aviation fuel plant and concluded that flows can be accommodated within the public sewerage system. However, the nearest public sewer comprises a strategic asset in the form of a 1200mm combined sewer located to the southeast and therefore, unless formed into an existing chamber such as SS77881201, any connection would need to be undertaken by Dwr Cymru Welsh Water and borne at the developer's expense.

Accordingly, should a planning application be submitted for this development we will seek to control these points of communication via appropriate planning conditions and therefore recommend that any drainage layout or strategy submitted as part of your application takes this into account. However, should you wish for an alternative connection point to be considered please provide further information to us in the form of a drainage strategy, preferably in advance of a planning application being submitted. In contrast, we acknowledge that the welfare requirements will be subject to temporary private drainage.

We welcome correspondence in Welsh and English

Dŵr Cymru Cyf, a limited company registered in Wales no 2366777. Registered office: Pentwyn Road, Nelson, Treharris, Mid Glamorgan CF46 6LY Rydym yn croesawu gohebiaeth yn y Gymraeg neu yn Saesneg

Dŵr Cymru Cyf, cwmni cyfyngedig wedi'i gofrestru yng Nghymru rhif 2366777. Swyddfa gofrestredig: Heol Pentwyn Nelson, Treharris, Morgannwg Ganol CF46 6LY.

Welsh Water is owned by Glas Cymru – a 'not-for-profit' company. Mae Dŵr Cymru yn eiddo i Glas Cymru – cwmni 'nid-er-elw'. You may need to apply to Dwr Cymru Welsh Water for any connection to the public sewer under Section 106 of the Water industry Act 1991. However, if the connection to the public sewer network is either via a lateral drain (i.e. a drain which extends beyond the connecting property boundary) or via a new sewer (i.e. serves more than one property), it is now a mandatory requirement to first enter into a Section 104 Adoption Agreement (Water Industry Act 1991). The design of the sewers and lateral drains must also conform to the Welsh Ministers Standards for Foul Sewers and Lateral Drains, and conform with the publication "Sewers for Adoption"- 7th Edition. Further information can be obtained via the Developer Services pages of www.dwrcymru.com.

SEWAGE TREATMENT

No problems are envisaged with the Waste Water Treatment Works for the treatment of domestic discharges from this site.

WATER SUPPLY

The water supply system in the immediate vicinity has insufficient capacity to serve the development and will also cause detriment to existing customers' water supply. A hydraulic modelling assessment is required to establish the scope of any reinforcement works to be completed in advance of making the connection. As part of the formal planning consultation process, we will seek to ensure that the assessment (and any associated reinforcement works) is completed in advance of the determination of the application or controlled by way of planning condition.

I trust the above information is helpful and will assist you in forming water and drainage strategies that should accompany any future planning application. I also attach copies of our water and sewer extract plans for the area, and a copy of our Planning Guidance Note which provides further information on our approach to the planning process, making connections to our systems and ensuring any existing public assets or infrastructure located within new development sites are protected.

Welsh Water is owned by Glas Cymru – a 'not-for-profit' company. Mae Dŵr Cymru yn eiddo i Glas Cymru – cwmni 'nid-er-elw'. We welcome correspondence in Welsh and English

Dŵr Cymru Cyf, a limited company registered in Wales no 2366777. Registered office: Pentwyn Road, Nelson, Treharris, Mid Glamorgan CF46 6LY Rydym yn croesawu gohebiaeth yn y Gymraeg neu yn Saesneg

Dŵr Cymru Cyf, cwmni cyfyngedig wedi'i gofrestru yng Nghymru rhif 2366777. Swyddfa gofrestredig: Heol Pentwyn Nelson, Treharris, Morgannwg Ganol CF46 6LY. Please note that our response is based on the information provided in your enquiry and should the information change we reserve the right to make a new representation. Should you have any queries or wish to discuss any aspect of our response please do not hesitate to contact our dedicated team of planning officers, either on 0800 917 2652 or via email at developer.services@dwrcymru.com

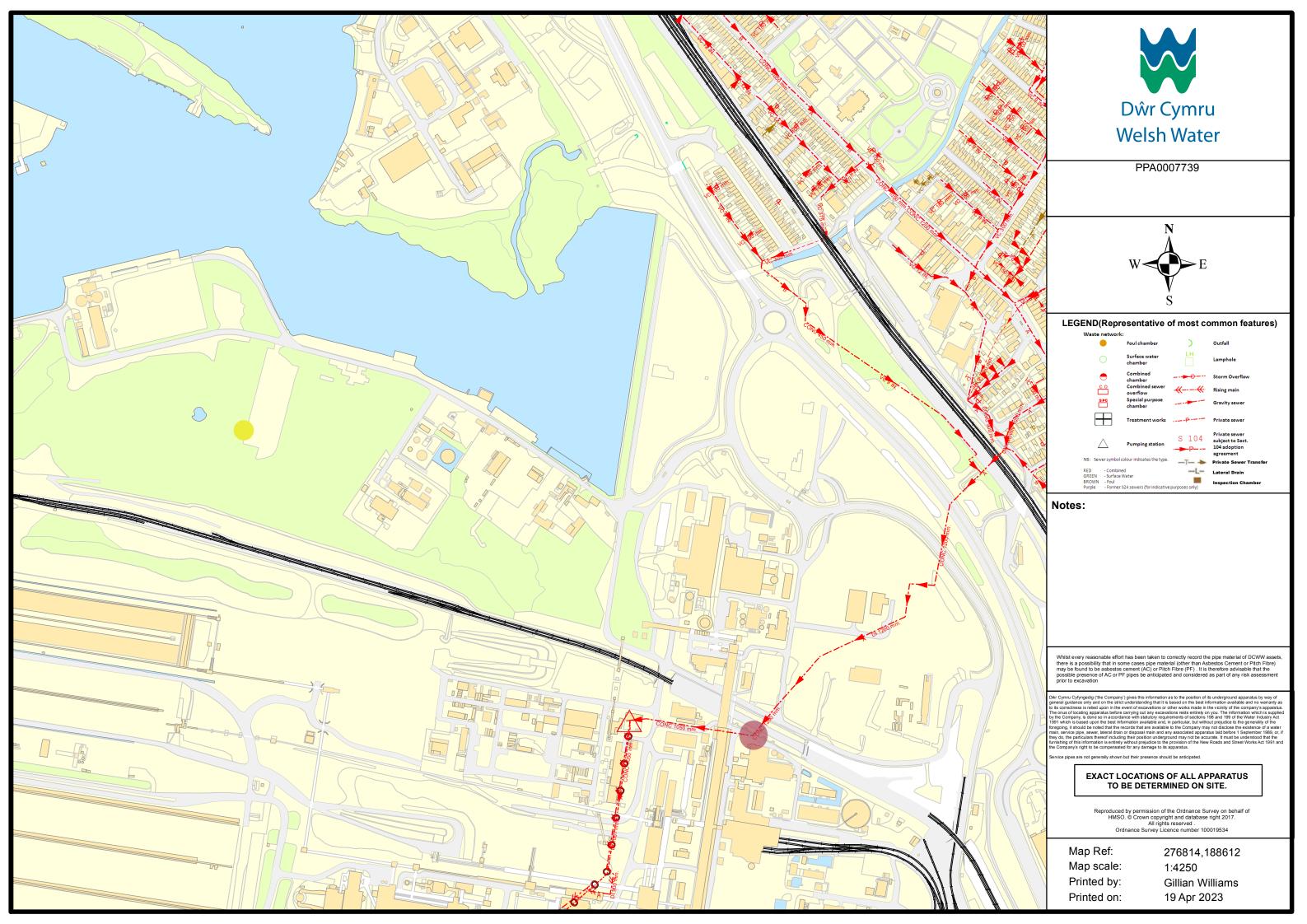
Please quote our reference number in all communications and correspondence.

Yours faithfully,

remes

Owain George Planning Liaison Manager Developer Services

ENC. SEWER PLAN WATER PLAN PRE PLANNING NOTES


<u>Please Note</u> that demands upon the water and sewerage systems change continually; consequently the information given above should be regarded as reliable for a maximum period of 12 months from the date of this letter.

Welsh Water is owned by Glas Cymru – a 'not-for-profit' company. Mae Dŵr Cymru yn eiddo i Glas Cymru – cwmni 'nid-er-elw'. We welcome correspondence in Welsh and English

Dŵr Cymru Cyf, a limited company registered in Wales no 2366777. Registered office: Pentwyn Road, Nelson, Treharris, Mid Glamorgan CF46 6LY Rydym yn croesawu gohebiaeth yn y Gymraeg neu yn Saesneg

Dŵr Cymru Cyf, cwmni cyfyngedig wedi'i gofrestru yng Nghymru rhif 2366777. Swyddfa gofrestredig: Heol Pentwyn Nelson, Treharris, Morgannwg Ganol CF46 6LY.

